01.10.2025 ______ ДР1350П-БВ2_изм.7 Сделано в России Предл.№66-25

ДРАЙВЕР ДР1350П-БВ2 ПАСПОРТ АЛЕИ.468332.125 ПС

СОДЕРЖАНИЕ

1 ОБЩИЕ СВЕДЕНИЯ	3
2 СОСТАВ ДРАЙВЕРА	3
З ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ДРАЙВЕРА	4
4 ОСНОВНЫЕ И ПРЕДЕЛЬНО-ДОПУСТИМЫЕ ПАРАМЕТРЫ	7
5 РАБОТА ДРАЙВЕРА	8
6 РЕКОМЕНДАЦИИ ПО ПОДКЛЮЧЕНИЮ ДРАЙВЕРА	10
7 ГРАФИКИ, ПОЯСНЯЮЩИЕ РАБОТУ ДРАЙВЕРА	10
8 РЕКОМЕНДАЦИИ ЭКСПЛУАТАЦИИ	11
9 КОМПЛЕКТНОСТЬ	
10 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	12
11 ГАРАНТИИ ПРЕДПРИЯТИЯ-ИЗГОТОВИТЕЛЯ	12
12 СВЕДЕНИЯ ОБ УТИЛИЗАЦИИ	

Данный документ является паспортом с описанием характеристик данного изделия, для которого предоставляется гарантия. Все изделия в процессе производства проходят полный контроль всех параметров, который выполняется дважды, один раз до герметизации, а затем еще раз после.

Любая такая гарантия предоставляется исключительно в соответствии с условиями соглашения о поставке (договор на поставку или другие документы в соответствии с действующим законодательством). Информация, представленная в этом документе, не предполагает гарантии и ответственности «Электрум АВ» в отношении использовании такой информации и пригодности изделий для Вашей аппаратуры. Данные, содержащиеся в этом документе, предназначены исключительно для технически подготовленных сотрудников. Вам и Вашим техническим специалистам придется оценить пригодность этого продукта, предназначенного для применения и полноту данных продукта, в связи с таким применением.

. Любые изделия «Электрум AB» не разрешены для применения в приборах и системах жизнеобеспечения и специальной техники без письменного согласования с «Электрум AB».

Если вам необходима информация о продукте, превышающая данные, приведенные в этом документе, или которая относится к конкретному применению нашей продукции, пожалуйста, обращайтесь в офис продаж к менеджеру, который является ответственным за Ваше предприятие.

Инженеры «Электрум АВ» имеют большой опыт в разработке, производстве и применении мощных силовых приборов и интеллектуальных драйверов для силовых приборов и уже реализовали большое количество индивидуальных решений. Если вам нужны силовые модули или драйверы, которые не входят в комплект поставки, а также изделия с отличиями от стандартных приборов в характеристиках или конструкции обращайтесь к нашим менеджерам и специалистам, которые предложат Вам лучшее решение Вашей задачи.

«Электрум АВ» оставляет за собой право вносить изменения без дополнительного уведомления в настоящем документе для повышения надежности, функциональности и улучшения дизайна.

1 ОБЩИЕ СВЕДЕНИЯ

Драйвер ДР1350П-БВ2 (далее – драйвер) – одноканальный драйвер мощных высоковольтных IGBT-транзисторов, предназначен для гальванически развязанного управления одним мощным транзистором с предельно допустимым напряжением до 6500 В. Драйвер является усилителем – формирователем сигналов управления затвором транзистора с частотой до 20 кГц. Драйвер содержит встроенный гальванически развязанный DC/DC преобразователь, обеспечивающий необходимые уровни отпирающих и запирающих напряжений на затворе транзистора.

Драйвер конструктивно аналогичен драйверу **1IPSE1A65-105H***. Структура обозначения драйвера приведена на рисунке 1.

Рисунок 1 – Структура обозначения драйвера

2 СОСТАВ ДРАЙВЕРА

- 2.1 Драйвер печатная плата с необходимыми настроечными элементами, разъемами для подключения управляемого транзистора, питания и сигналов управления.
 - 2.2 В состав драйвера входят следующие функциональные узлы:
 - а) встроенный DC/DC преобразователь со стабилизацией уровня отпирающего и запирающего напряжения на затворе управляемого транзистора;
 - б) входная логика;
 - в) светодиодная индикация режимов работы;
 - г) схема управления затвором управляемого транзистора;
 - д) схема защиты от пониженного и повышенного напряжения на затворе транзистора;
 - е) схема сигнализации при пониженном напряжении питания;
 - ж) схема защиты управляемого транзистора от перегрузки по току;
 - з) схема шунтирования затвора при выключении («Miller Clamping»).

^{*} В связи с особенностями схемотехники, конструкции и свойств применяемых материалов имеются некоторые отличия от оригинала, которые указаны в описании. Перед применением рекомендуем внимательно изучить информацию на изделие.

3 ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ДРАЙВЕРА

- 3.1 Драйвер обеспечивает следующие функции управления, контроля и защиты управляемого транзистора:
 - а) контроль напряжения насыщения на коллекторе управляемого транзистора, его защитное отключение при выходе из состояния насыщения;
 - б) обеспечение плавного перехода драйвера из активного состояния в неактивное при аварии (выход управляемого транзистора из режима насыщения);
 - в) блокировку управления при аварии;
 - г) сигнализацию о наличии аварии;
 - д) контроль напряжения питания драйвера на входе DC/DC преобразователя;
 - е) контроль напряжения питания на выходе DC/DC преобразователя;
 - ж) шунтирование затвора при выключении.
- 3.2 Габаритный чертёж приведен на рисунке 2, функциональная схема драйвера приведена на рисунке 3, графики, поясняющие работу драйвера, приведены в разделе 7.

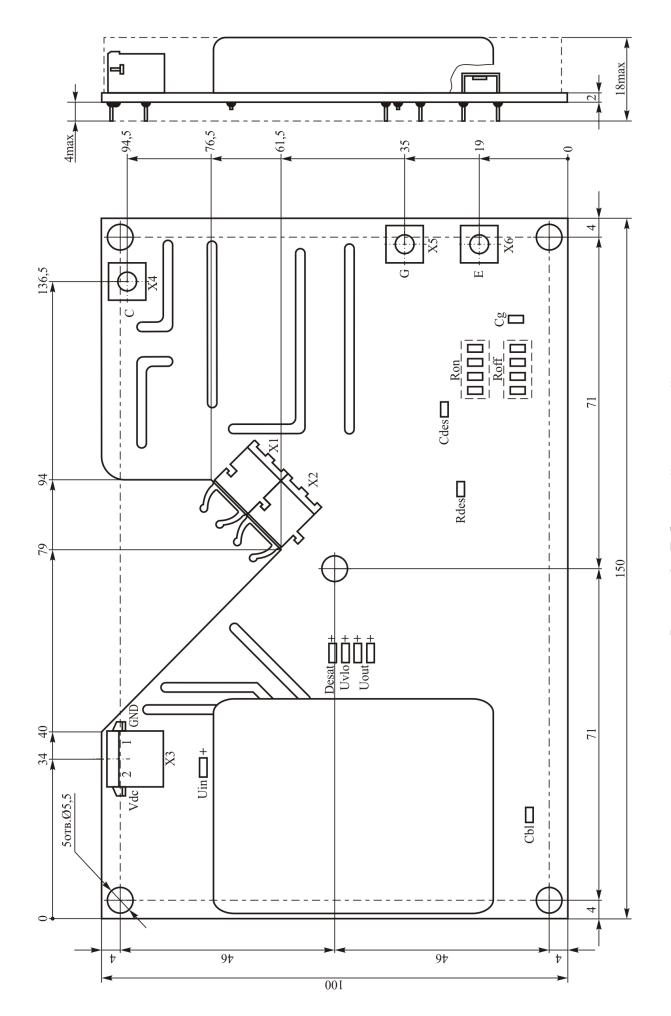


Рисунок 2 – Габаритный чертеж драйвера

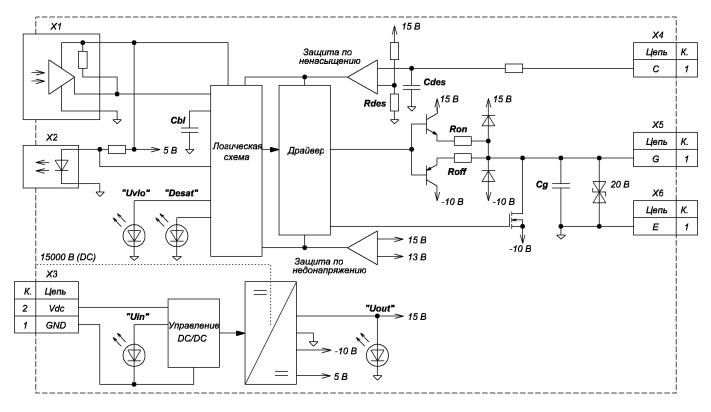


Рисунок 3- Функциональная схема драйвера

3.3 Назначение выводов приведено в таблице 1, назначение светодиодной индикации в таблице 2, назначение настроечных элементов в таблице 3.

Таблица 1 – Назначение выводов драйвера

Вывод	Обозначение	Назначение вывода	Тип
X1	IN	Приёмник сигнала управления	HFBR-2522ETZ
X2	OUT	Передатчик статусного сигнала	HFBR-1522ETZ
X3:1	GND	Общий цепей питания	MSTBA 2,5/2-G-5,08-RN-1926015
X3:2	Vdc	Питание +24 В	WISTBA 2,3/2-G-3,08-KN-1920013
X4	C	Измерительный вход коллектора	PCB-1M4
X5	G	Выход подключения затвора	PCB-1M4
X6	Е	Выход подключения эмиттера	PCB-1M4

Таблица 2 – Назначение светодиодной индикации

				Аварийная ситуация				
		Назначение		Отсут-	Отсут-	Защита от	Защита по	
Обозна-	Цвет		Штатная	ствует	ствует	понижен-	ненасы-	
чение	цы	Trasha temre	работа	напряже-	выходное	ного	щению	
				ние	напряже-	напряже-		
				питания	ние	ния		
Uin Зелён	Зелёный	Индикация наличия входного	Светится		Светится	Светится	Светится	
OIII	Эсленый	напряжения питания						
Uout	Зелёный	Индикация наличия выходного	Светится	_	_	Светится	Светится	
Cour	Эсленын	напряжения питания	СВСТИТСЯ	Эветител —		Светится	Светитея	
Uvlo	Жёлтый	Индикация срабатывания защи-				Светится	Светится	
OVIO	желтыи	ты от пониженного напряжения		1			Светитея	
Dogat	Красный	Индикация срабатывания защи-					Светится	
Desat		ты по ненасыщению	_	_	_	_	Светится	

Таблица 3 – Назначение настроечных элементов

Обозначение	Тип	Назначение	Номинал при
Обозначение Тип		Пазначение	поставке
Volumence to the corresponding		Конденсатор настройки длительности блокировки в режиме аварии	4,7 мкФ
Cbl	1206	(срабатывание защиты по ненасыщению)	(соответствует
		(срабатывание защиты по ненасыщению)	500 мс)
		Конденсатор настройки задержки срабатывания защиты по нена-	680 пФ
Cdes	1206		(соответствует
		сыщению	10 мкс)
Cg	1206	Затворный конденсатор	0,01 мкФ
			1,3 кОм
Rdes	1206	1206 Резистор настройки порога срабатывания защиты по ненасыщению	(соответствует
			50 B)
Ron	4 x 1206	Резисторы настройки импульсного тока включения	1 Ом
Roff	4 x 1206	Резисторы настройки импульсного тока выключения	1 Ом

4 ОСНОВНЫЕ И ПРЕДЕЛЬНО-ДОПУСТИМЫЕ ПАРАМЕТРЫ

Основные и предельно-допустимые параметры драйвера при температуре $25~^{\circ}\mathrm{C}$ приведены в таблице 4.

Таблица 4 – Основные и предельно-допустимые параметры

		Единица	Значение			
Параметр	Обозначение	измерения	не менее	тип	не более	Примечания
	Параметр	ы блока DC/D				
Напряжение питания	U_{S}	В	22	24	25	_
Ток потребления холостого хода	I_{S}	мА	_	90	150	$f_{yпp} = 0$ Γ ц
Максимальный ток потребления	$I_{S max}$	мА	_	_	500	под нагрузкой
Мощность встроенного источника питания выходной части	$P_{DC/DC}$	Вт	5,0	_	_	_
	Параметры мог	ниторов напр	яжения		•	
Порог включения защиты	U_{DC-}	В	-	19	_	DC/DC
Порог выключения защиты	U_{DC+}	В	_	21	_	вход DC/DC
Порог включения защиты	U_{UVLO}	В	_	12	_	DC/DC
Порог выключения защиты	$U_{\rm UVLO+}$	В	_	13	_	выход DC/DC
	Временн	ые параметры	I		•	
Время задержки включения / выключения вход-выход	td (on/off)	мкс	_	0,6	1,0	_
Задержка включения статусного сигнала по фронту управления	td (ack)	мкс	_	0,2	_	_
Длительность статусного сигнала по фронту управления	tack	мкс	1,0	_	2,0	_
Рабочая частота	$f_{ m max}$	кГц	_	_	20	без нагрузки; см. рисунок 7
Время задержки срабатывания защиты по ненасыщению	t_{BL1}	мкс	5	_	20	настраивается; см. рисунок 9
Время блокировки управляемого		мкс	_	30	_	без Cbl
транзистора после аварии	t_{BL2}	С	0,01	_	0,5	настраивается; см. рисунок 8
Время плавного аварийного отключения транзистора	toff	МКС	ı	1	_	на нагрузке 0,01 мкФ
Время задержки включения сигнала аварии	$td_{(on\text{-err})}$	МКС	-	_	0,5	_
	Выходн	ые параметры	I .			
Выходное напряжение включения	U_{OH}	В	+13	+15	+17	во всем диапазоне
Выходное напряжение выключения	U_{OL}	В	-8	-10	-12	допустимых нагру- зок
Максимальный выходной импульсный ток включения	$I_{\mathrm{Omax\ on}}$	A	+35	_	_	настраивается

Продолжение таблицы 4

Продолжение таолицы 4	Обозначение	Единица измерения	,	Значение		
Параметр			не менее	тип	не более	Примечания
Максимальный выходной импульсный ток выключения	$I_{\mathrm{Omax\ off}}$	A	-	_	-35	настраивается
Средний выходной ток	I_{O}	мА	_	_	200	_
Время нарастания / спада выходного сигнала	$t_{r(f)}$	мкс	-	_	0,3	на нагрузке 0,01 мкФ
Ёмкость нагрузки	C_G	мкФ	0,01	_	0,7	
Напряжение срабатывания защиты по ненасыщению	U_{MC}	В	25	_	250	настраивается; см. рисунок 10
Параметры управления						
Длина волны, используемая при передаче и приеме сигнала	λ	НМ	_	660	_	_
Расстояние передачи статусного сигнала	$L_{ m err}$	М	25	_	-	_
	Параме	гры изоляции				
Напряжение изоляции между входом и выходом	$U_{\rm ISO(IN\text{-}OUT)}$	В	-	_	10000	АС, 1 мин
Критическая скорость изменения напряжения на выходе	(dU/dt) _{cr}	кВ/мкс	ı	_	50	_
	Параметры упра	вляемого тра	нзистора			
Максимально допустимое напряжение управляемого транзистора	$U_{C}\left(U_{DS}\right)$	В	_	_	6500	_
	Параметры эксг	ілуатации и х	ранения			
Рабочий диапазон температур	T_A	°C	-50	_	+85	_
Температура хранения	Ts	°C	-50	_	+90	_

5 РАБОТА ДРАЙВЕРА

Подача/снятие светового импульса на приемник управляющего сигнала X1 (IN) приведет к отпиранию/запиранию управляемого транзистора. При этом по переднему и заднему фронтам на оптопередатчике X2 (OUT) формируются статусные сигналы (импульсы) с задержкой td (ack) и длительностью tack. Поясняющая диаграмма штатной работы драйвера приведена на рисунке 4.

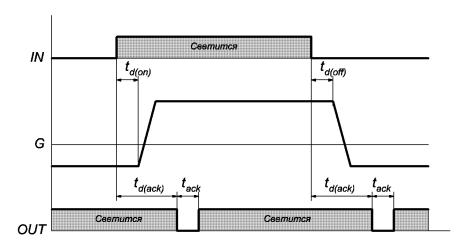


Рисунок 4 – Диаграмма штатной работы драйвера

Увеличение падения напряжения в открытом состоянии более чем на U_{MC} за время, превышающее t_{BL1} , приведет к срабатыванию защиты по ненасыщению. При этом управляемый транзистор будет плавно выключен за время t_{off} и на оптопередатчике X2 появится статусный сигнал длительностью t_{BL2} . При неустановленном конденсаторе «Cbl» транзистор будет включен по переднему фронту управляющего сигнала, но не ранее чем через 30 мкс после возникновения аварии. При установленном конденсаторе «Cbl» транзистор будет включен по переднему фронту управляющего сигнала по прошествии установленного времени t_{BL2} . Если причина аварии не была устранена, цикл защиты повторится. Пояс-

няющая диаграмма работы драйвера при срабатывании защиты по ненасыщению приведена на рисунке 5.

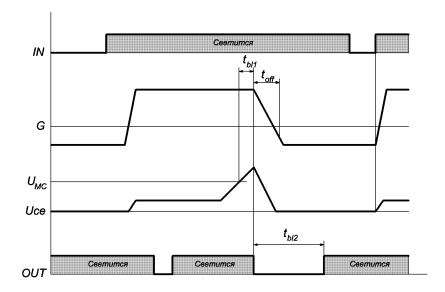


Рисунок 5 – Диаграмма срабатывания защиты по ненасыщению

Снижение напряжения питания драйвера, приводящее к уменьшению выходного напряжения до уровня порога срабатывания защиты от пониженного напряжения питания драйвера «Uuvlo-», повлечет за собой закрытие управляемого транзистора независимо от входных сигналов управления. При повышении напряжения питания до величины, обеспечивающей выходное напряжение на уровне порога срабатывания защиты от пониженного напряжения питания драйвера «Uuvlo+», сигналы управления восстановятся. При срабатывании защиты от пониженного напряжения на оптопередатчике X2 появится статусный сигнал согласно диаграммы рисунка 6.

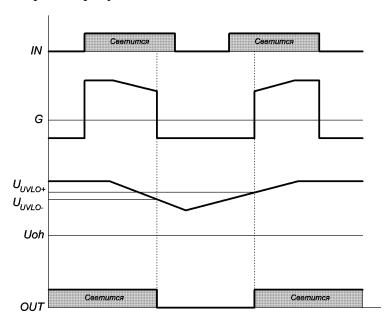


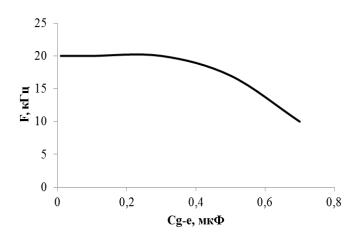
Рисунок 6 – Диаграмма срабатывания защиты от недонапряжения затвора

6 РЕКОМЕНДАЦИИ ПО ПОДКЛЮЧЕНИЮ ДРАЙВЕРА

X1 (IN). Представляет собой микросхему преобразователя световых импульсов ВОЛС в логические сигналы управления. Открыванию транзистора соот. наличие засветки; запиранию – отсутствие засветки.

X2 (OUT). Представляет собой микросхему формирователя статусного светового сигнала. Алгоритм функционирования оптопередатчика описан в разделе 5.

X3 (Vdc). Вход подключения «+» питания драйвера (DC/DC-преобразователя).


X3 (GND). Вход подключения «-» питания драйвера; «общий» схемы DC/DC-преобразователя.

G. Вывод подключения затвора управляемого транзистора. В драйвере установлены ограничивающие затворные резисторы Ron / Roff и затворный конденсатор Cg.

С. Вывод подключения коллектора управляемого транзистора. Вывод предназначен для контроля падения напряжения коллектор-эмиттер транзистора (защита по ненасыщению).

Е. Вывод подключения эмиттера управляемого транзистора.

7 ГРАФИКИ, ПОЯСНЯЮЩИЕ РАБОТУ ДРАЙВЕРА

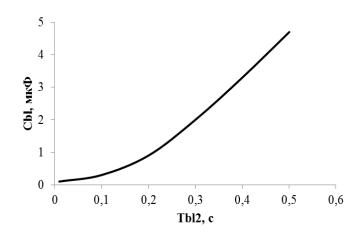


Рисунок 7 – График области безопасной работы драйвера (с затворными резисторами 1 Ом)

Рисунок 8 – График зависимости длительности блокировки в режиме аварии от номинала ёмкости Cbl

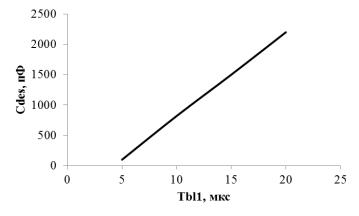


Рисунок 9 – График зависимости длительности задержки включения защиты по насыщению от номинала ёмкости Cdes

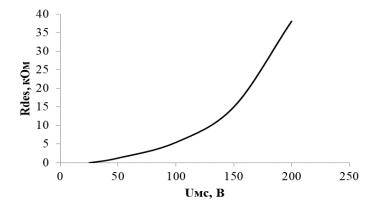


Рисунок 10 – График зависимости напряжения срабатывания защиты по насыщению от номинала резистора Rdes

8 РЕКОМЕНДАЦИИ ЭКСПЛУАТАЦИИ

8.1 Требования к устойчивости при механических воздействиях

Механические воздействия для драйверов - по ГОСТ 20859.1 с уточнениями, приведенными в таблице 4.

Таблица 4 - Требования по устойчивости драйверов к механическим воздействующим факторам

Внешний воздействующий фактор	Значение внешнего воздействующего фактора
Синусоидальная вибрация:	
- диапазон частот, Гц;	0,5 - 100
- амплитуда ускорения, м/ c^2 (g)	10 (1)
Механический удар одиночного действия:	
- пиковое ударное ускорение, M/c^2 (g);	30 (3)
- длительность импульса ударного ускорения, мс	20

Группа устойчивости драйверов к механическим воздействиям - М27 по ГОСТ 17516.1-90.

В технически обоснованных случаях, по требованию конкретных заказчиков, драйверы могут изготавливаться и для других условий эксплуатации по ГОСТ 17516.1-90.

8.2 Требования к устойчивости при климатических воздействиях.

Климатические воздействия - по ГОСТ 20859.1 с уточнениями, приведенными в таблице 5.

Таблица 5 - Требования по устойчивости к климатическим воздействующим факторам

Климатический фактор	Значение климатического фактора
Пониженная температура среды:	
- рабочая, °С;	-50
- предельная, °С	-50
Повышенная температура окружающей среды:	
- рабочая, °С;	+85
- предельная, °C	+90
Относительная влажность при температуре 35 °C без конден-	
сации влаги, %, не более	98
Изменение температуры среды, °С	от -50 до +90
Атмосферное пониженное давление, Па (мм рт.ст.)	86000 (650)
Атмосферное повышенное давление, Па (мм.рт.ст.)	106000 (800)
Допускается выпадение на поверхность драйвера инея, с по-	
следующим оттаиванием	_

9 КОМПЛЕКТНОСТЬ

9.1 Составные части изделия и изменения в комплектности

Комплектность изделия представлена в таблице 5.

Таблица 5 - Комплектность

Обозначение изделия	Наименование изделия	Количество	Заводской номер	Примечание
АЛЕИ.468332.129	Драйвер ДР1350П-БВ2	1		
_	Разъем FKC 2,5/2-ST-5,08-RF-1925692	1	_	

9.2 Эксплуатационная документация

АЛЕИ.468332.129 ПС

10 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Драйвер(ы) ДР1350П-БВ2 соответствует(ют) АЛЕИ 468332.031 ТУ
Заводской номер
Дата изготовления
Место для штампа ОТК

11 ГАРАНТИИ ПРЕДПРИЯТИЯ-ИЗГОТОВИТЕЛЯ

Предприятие-изготовитель гарантирует соответствие драйвера требованиям АЛЕИ.468332.031 ТУ при условии соблюдения правил транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок – 2,5 года с даты изготовления.

Гарантийный срок хранения – 2 года с даты изготовления.

Гарантийный срок эксплуатации – 2 года с даты ввода драйвера в эксплуатацию в пределах гарантийного срока.

12 СВЕДЕНИЯ ОБ УТИЛИЗАЦИИ

Утилизация изделия (переплавка, захоронение, перепродажа) производится в порядке, установленном Законами РФ: от 04 мая 1999г. № 96-ФЗ «Об охране атмосферного воздуха», от 24 июня 1998 г. № 89-ФЗ «Об отходах производства и потребления», а также другими общероссийскими и региональными нормами, правилами, распоряжениями и пр., принятыми во исполнение указанных законов.