

ДРАЙВЕР ТРЕХФАЗНОГО РЕГУЛИРУЕМОГО ВЫПРЯМИТЕЛЯ ДТРВ-6.2-DIN ПАСПОРТ АЛЕИ.431169.012 ПС

СОДЕРЖАНИЕ

1 Основные сведения об изделии и технические данные	3
2 Гарантии предприятия-изготовителя	
3 Свидетельство о приемке	
4 Комплектность	
4.1 Составные части изделия и изменения в комплектности	
4.2 Эксплуатационная документация	
5 Сведения об утилизации	

Данный документ является паспортом с описанием характеристик данного изделия, для которых предоставляется гарантия. Все изделия в процессе производства проходят полный контроль всех параметров, который выполняется дважды, один раз до герметизации, а затем еще раз после.

Любая такая гарантия предоставляется исключительно в соответствии с условиями соглашения о поставке (договор на поставку или другие документы в соответствии с действующим законодательством). Информация, представленная в этом документе, не предполагает гарантии и ответственности «Электрум АВ» в отношении использовании такой информации и пригодности изделий для Вашей аппаратуры. Данные, содержащиеся в этом документе, предназначены исключительно для технически подготовленных сотрудников. Вам и Вашим техническим специалистам придется оценить пригодность этого продукта, предназначенного для применения и полноту данных продукта, в связи с таким применением.

Любые изделия «Электрум AB» не разрешены для применения в приборах и системах жизнеобеспечения и специальной техники, без письменного согласования с «Электрум AB».

Если вам необходима информация о продукте, превышающая данные, приведенные в этом документе, или которая относится к конкретному применению нашей продукции, пожалуйста, обращайтесь в офис продаж к менеджеру, который является ответственным за Ваше предприятие.

Инженеры «Электрум АВ» имеют большой опыт в разработке, производстве и применении мощных силовых приборов и интеллектуальных драйверов для силовых приборов и уже реализовали большое количество индивидуальных решений. Если вам нужны силовые модули или драйверы, которые не входят в комплект поставки, а также изделия с отличиями от стандартных приборов в характеристиках или конструкции обращайтесь к нашим менеджерам и специалистам, которые предложат Вам лучшее решение Вашей залачи.

«Электрум AB» оставляет за собой право вносить изменения без дополнительного уведомления в настоящем документе для повышения надежности, функциональности и улучшения дизайна.

1 Основные сведения об изделии и технические данные

Драйвер трехфазного регулируемого выпрямителя ДТРВ-6.2-DIN (далее – драйвер) предназначен для управления драйверами ДТ с оптоволоконным входом (производства АО «Электрум-АВ») в составе трехфазных тиристорных преобразователей:

- трехфазный регулируемый шестипульсовый выпрямитель;
- трехфазный регулируемый шестипульсовый выпрямитель с регулированием по первичной обмотке силового трансформатора.

Основные отличия и новизна примененных решений:

- диапазон рабочих частот от 40 до 440 Гц (автоподстройка);
- напряжение питания 5 В или от 9 до 30 В;
- плавный пуск при подаче сетевого напряжения;
- выдержка времени после подачи сетевого напряжения (для устранения проскоков напряжения по выходу);
- бланкирование коммутационных выбросов и провалов в синхронизирующем импульсе;
- фиксированная выдержка 1 с после срабатывания токовой защиты;
- длительность плавного пуска привязана к количеству периодов сетевого напряжения;
- формирование импульсов управления осуществляется в многоканальном таймере, с единой временной базой;
- индикация состояния «Регулирование»;
- быстросъмные клеммные соединения.

Применение:

- Выпрямители для питания IGBT инверторов с возможностью плавного заряда конденсаторных батарей.
- Выпрямители для заряда аккумуляторных батарей.
- Выпрямители устройств катодной антикоррозионной защиты.
- Выпрямители для питания привода постоянного тока.

В драйвере применен вертикально-импульсный метод регулирования среднего значения напряжения на нагрузке, при котором изменение среднего значения производится изменением длительности открытого состояния тиристоров в течение соответствующего полупериода напряжения сети.

Функциональная схема драйвера приведена на рисунке 1.

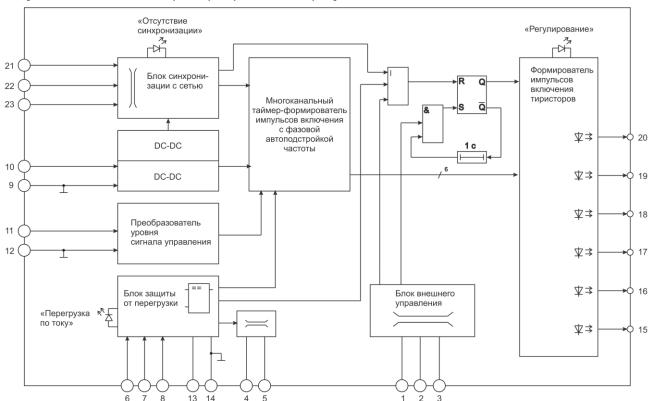


Рисунок 1 – Функциональная схема драйвера

С контактов разъема 21, 22, 23 в драйвер поступает синхронизирующее напряжение. Блок синхронизации с сетью формирует импульсы в момент перехода напряжения сети через 0, которые синхронизируют многоканальный таймер-формирователь импульсов включения тиристоров с фазовой автоподстройкой частоты. На контакты разъема 11, 12 в драйвер поступает управляющий сигнал. Изменение величины управляющего сигнала приводит к изменению временного сдвига импульсов включения относительно перехода через 0. Пропорционально этому сдвигу изменяется угол проводимости тиристоров, а соответственно и напряжение на нагрузке.

В драйвере с внешним перезапуском предусмотрены контакты разъема 1, 2, 3 «Пуск» и «Стоп», гальванически изолированные от цепей питания драйвера. При подаче сигнала на контакт «Пуск», по переднему фронту импульса производится плавная подача напряжения на нагрузку выпрямителя, при подаче сигнала на контакт «Стоп», по переднему фронту импульса производится снятие напряжение с нагрузки выпрямителя.

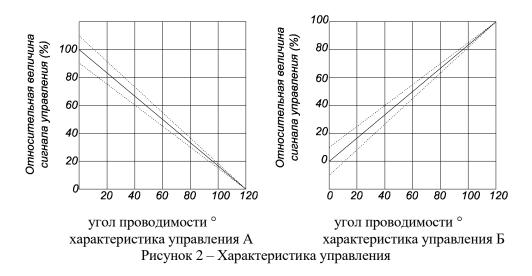
В драйвере предусмотрен режим плавного пуска по включению питания, подаче синхронизирующих сигналов и при возврате из режима «Перегрузка по току» в рабочий режим, позволяющий снизить пусковой ток при работе на емкостную нагрузку.

В драйвере предусмотрены следующие виды защит: защита по максимальному току и защита от обрыва и обратного порядка чередования фаз синхронизирующего напряжения.

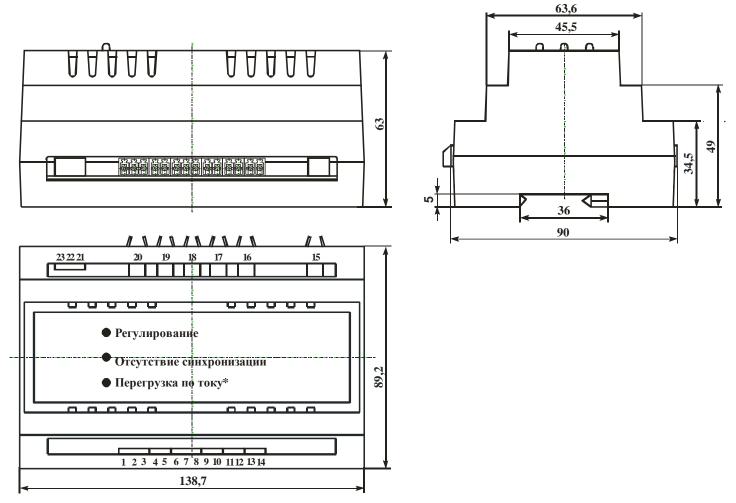
Работа защиты по максимальному току.

Для работы защиты по току в драйвере предусмотрены контакты 6, 7, 8 для подключения трансформаторов тока и контакты 13, 14 для настройки тока срабатывания защиты. Настройка драйвера на требуемый ток осуществляется подключением к контактам 13, 14 одного или нескольких параллельно соединенных резисторов, поставляемых в комплекте. Драйвер с автоматическим перезапуском при достижении значения тока в нагрузке выше допустимого переходит в состояние «Перегрузка по току», происходит включение статусного светодиода (с красным цветом свечения) или открывание транзистора статусного оптрона контакты 4, 5, на выходах управления драйверами тиристоров формируются сигналы, соответствующие закрытому состоянию тиристоров. Через 1 с защита снимается. Происходит отключение статусного светодиода (или закрытие транзистора статусного оптрона), на выходах управления тиристорами формируются сигналы, осуществляющие плавный пуск от нуля до величины среднего значения напряжения на нагрузке, определяемой величиной сигнала управления. Если аварийная ситуация не устранена, вышеописанный процесс циклически продолжается до тех пор, пока не будет устранена неисправность.

В драйвере с внешним перезапуском при возникновении режима «Перегрузка по току» происходит снятие напряжения нагрузки выпрямителя без автоматического перезапуска. Возврат в рабочий режим производится подачей внешнего сигнала на вход «Пуск».


Работа защиты от обрыва и обратного порядка чередования фаз.

При отсутствии одной или нескольких фаз синхронизирующего напряжения (контакты 21, 22, 23), а также при неверном порядке чередования фаз, индикатор «Отсутствие синхронизации» светится оранжевым цветом, на выходах управления тиристорами, сформированы сигналы соответствующие их закрытому состоянию. Этим исключается работа преобразователя в неполнофазном режиме, а также неуправляемое состояние при нарушении порядка чередования фаз. В драйвере с внешним перезапуском при срабатывании этой защиты возврат в рабочий режим производится подачей внешнего сигнала на вход «Пуск». В драйвере с автоматическим перезапуском возврат в рабочий режим происходит автоматически после восстановления синхронизации. В обоих исполнениях после возврата в рабочий режим происходит плавный пуск.


Для индикации работы драйвера имеется индикатор «Регулирование» с зеленым цветом свечения.

Драйвер работает в комплекте с управляющими устройствами (стороннего производителя), имеющими стандартный аналоговый выходной сигнал постоянного тока.

Преобразователь сигнала управления, в зависимости от варианта исполнения драйвера, производит преобразование управляющего сигнала пяти видов (от 0 до 5 В; от 0 до 10 В; от 0 до 5 мА; от 0 до 20 мА; от 4 до 20 мА) в сигнал «Uупр» для двух типов характеристики управления. Зависимость угла проводимости тиристоров (времени, в течение которого тиристоры проводят ток) от относительной величины управляющего сигнала показана на рисунке 2.

Габаритные и присоединительные размеры представлены на рисунке 3, функциональное назначение выводов – в таблице 1, назначение органов индикации – в таблице 2, эксплуатационные параметры – в таблице 3, величины токов срабатывания токовой защиты для исполнений ПТ1 и ПТ2 – в таблицах 4 и 5 соответственно.

^{*}Только для вида индикации статусный светодиод.

 Γ де тип используемого оптического передатчика — HFBR-1522. Показаны все возможные варианты расположения выводов

Рисунок 3 – Габаритные и присоединительные размеры

Таблица $1 - \Phi$ ункциональное назначение выводов драйвера

Вывод	Обозначение	Назначение
1	Стоп	Вход сигнала «Стоп» (для исполнения с внешним перезапуском)
2	Пуск	Вход сигнала «Пуск» (для исполнения с внешним перезапуском)
3	Общ.	Общий вывод для сигналов «Пуск» и «Стоп» (для исполнения с внешним перезапуском)
4	Э	Эмиттер статусного оптрона (для исполнения со статусным оптроном)
5	К	Коллектор статусного оптрона (для исполнения со статусным оптроном)
6	ДТ1	Вход датчика тока фаза 1
7	ДТ2	Вход датчика тока фаза 2
8	ДТ3	Вход датчика тока фаза 3
9	- Пит	Питание 5 В
10	+ ∏ит	Питание 3 В
11	+ y	Управление
12	- Y	Управление
13	R3.1	Контакты токоограничивающего резистора в цепи токовой защиты
14	R3.2	Контакты токоограничивающего резистора в цепи токовои защиты
15	ДT VS6	Оптический разъем подключения драйвера тиристора VS6
16	ДT VS5	Оптический разъем подключения драйвера тиристора VS5
17	ДT VS4	Оптический разъем подключения драйвера тиристора VS4
18	ДT VS3	Оптический разъем подключения драйвера тиристора VS3
19	ДT VS2	Оптический разъем подключения драйвера тиристора VS2
20	ДT VS1	Оптический разъем подключения драйвера тиристора VS1
21	Ф3 с	
22	Ф2 с	Входы синхронизации с сетью
23	Ф1 с	

Таблица 2 – Назначение органов индикации

Красный светодиод Оптрон (контакты 4, 5)	Перегрузка по току
Оранжевый светодиод	Отсутствие синхронизации
Зеленый светодиод	Регулирование

Таблица 3 – Эксплуатационные параметры

Таблица 3 – Эксплуатационные параметры		7	Вначени	e.	
Наименование параметра, обозначение параметра	Единица измерения	не	тип	не более	Примечания
Напряжение питания, Ucc	В	9	_	30	Для исполнения по напряжению питания «Р»
Ток потребления, Ісс	мА	_	_	75	При напряжении питания 9 В; для исполнения по напряжению питания «Р»
ток потреоления, тес	MA	_	_	25	При напряжении питания 30 В; для исполнения по напряжению питания «Р»
Напряжение питания, Ucc	В	4,5	_	5,5	Для исполнения по напряжению питания
Ток потребления, Ісс	мА	_	_	100	«Без обозначения»
Частота переменного сетевого напряжения, f	Гц	40	_	440	Автоподстройка
Dyo wyso come orygnyddyn y cyned y ymend y cyne	кОм	10	_	_	Для аналоговых сигналов 0–5 B, 0–10 B
Входное сопротивление цепей управления, R_{BX}	Ом	_	_	360	Для аналоговых сигналов 0-5 мА 0-20 мА, 4-20 мА
Максимальное напряжение на выводах К-Э, $U_{\text{MAX.K-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}$	В	_	_	50	-
Максимальный ток через выводы К-Э, Імах.к-э	мА	_	_	20	_
Напряжение импульса перезапуска, U _{IMP}	В	_	_	5	Без токоограничивающего резистора
Длительность импульса перезапуска, тімр	мс	10	_	_	_
Длительность плавного запуска, $ au_{SS}$	период	25	_	_	При максимальном значении сигнала управления
Напряжение синхронизации, U _{SYN}	В	100	_	440	Исполнение 01
•	Б	20		100	Исполнение 03
Ток, потребляемый по входу синхронизации, I_{SYN}	мА	_	_	10	-
Электрическая прочность изоляции цепей питания, входных цепей, статусных цепей, цепей внешнего перезапуска относительно цепей синхронизации, $U_{\rm INS}$	кВ	_	_	2,5	Переменный ток 50 Гц
Эксплуатационная температура окружающей среды, Т	°C	-40	_	+85	_
Относительная влажность, ф	%	_	_	80	

Таблица 4 - Величины токов срабатывания токовой защиты для исполнения ПТ1

Ток, А	40	60	80	100	120	140	160	180	200	220
R3, Ом	430	160	100	68	56	43	39	33	30	27

Таблица 5 - Величины токов срабатывания токовой защиты для исполнения ПТ2

таолица 5 Вели ины токов срасатывания токовой защиты для исполнения 1112										
Ток, А	250	300	350	400	450	500	550	600	650	700
R3, Ом	91	68	56	47	39	36	33	30	27	24

При использовании сторонних датчиков R3, Ом, вычисляют по формуле

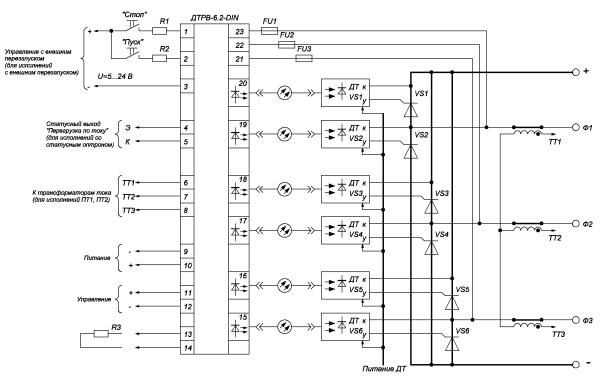
$$R3 \approx \frac{450 \cdot K_{\text{TP}}}{180 \cdot I - 2.5 \cdot K_{\text{TP}}}$$

где K_{TP} – коэффициент трансформации;

I – амплитуда тока, А.

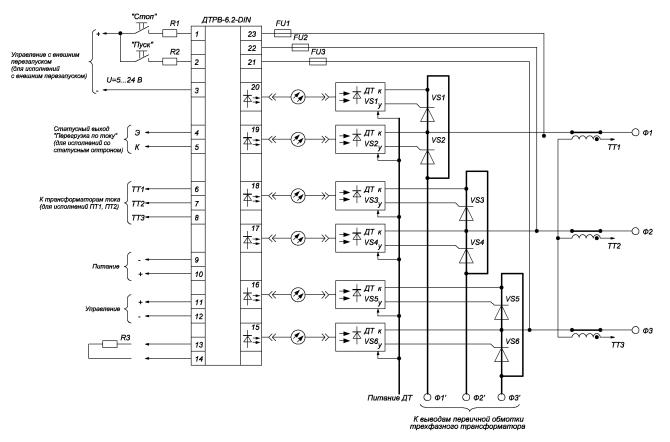
Система обозначения драйвера:

Пример обозначения:
$$\frac{\Pi TPB-6.2}{1} - \frac{A}{2} - \frac{1}{3} - \frac{\Pi T0}{4} - \frac{A}{5} - \frac{1}{6} - \frac{DIN1}{7}$$


- 1 Наименование драйвера.
- 2 Характеристика управления:
 - А 100% сигнала управления соответствуют нулевой мощности;
 - Б 100% сигнала управления соответствуют полной мощности.
- 3 Вид сигнала управления:
 - 1 0...5 B:
 - 2 0...10 B;
 - 3 4...20 mA;
 - 4 0...5 MA;
 - 5 0...20 мА.
- 4 Вариант комплектности при поставке (см. таблицу 5):
 - $\Pi T0$ без токовой защиты;
 - ПТ1 диапазон токовой защиты от 40 до 220 А;
 - ПТ2 диапазон токовой защиты от 250 до 700 А.
- 5 Вид перезапуска:
 - А автоматический перезапуск;
 - В внешний перезапуск.
- 6 Вид индикации при срабатывании токовой защиты:
 - 1 статусный светодиод;
 - 2 статусный оптрон.
- 7 Крепление на DIN-рейку 35 мм.
- 8 Напряжение синхронизации:
 - 01 -от 100 до 400 В;
 - 03 -от 20 до 100 В.
- 9 Исполнение по напряжению питания:

$$P - (9 - 30) B;$$

Без обозначения – 5 В.


При монтаже не допускается прокладывание проводов силовой линии и управляющих цепей в одном жгуте или общей трубе (коробе). Не допускать петель в соединительных проводах цепей управления и питания. Соединительные провода для обеспечения помехоустойчивости следует выполнить витыми парами.

Схемы подключения драйвера показаны на рисунках 4, 5.

где R1, R2 =
$$\frac{U-5}{0.01}$$
 (Ом);

R3 – токоограничивающий резистор в цепи токовой защиты Рисунок 4 – Схема подключения в составе мостового выпрямителя

где R1, R2 =
$$\frac{U-5}{0.01}$$
 (Ом);

R3 – токоограничивающий резистор в цепи токовой защиты ; FU1 – FU3 – предохранители на ток 0,1 A Рисунок 5 – Схема подключения с регулированием по первичной обмотке трансформатора

2 Гарантии предприятия-изготовителя

Предприятие-изготовитель гарантирует соответствие драйвера требованиям КД при условии соблюдения правил транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок – 2,5 года с даты изготовления.

Гарантийный срок хранения – 2 года с даты изготовления.

 Γ арантийный срок эксплуатации — 2 года с даты ввода драйвера в эксплуатацию в пределах гарантийного срока.

3 Свидетельство о приемке

Драйвер(ы)	соответствует(ют) КД
Заводской(ие) номер(а)	
Дата изготовления	
Место для штампа ОТК	

4 Комплектность

4.1 Составные части изделия и изменения в комплектности

Комплектность изделия представлена в таблице 6.

Таблица 6 – Комплектность

Обозначение	Наименование	Коли-	Заводской	Приме-	
изделия	изделия	чество	номер	чание	
АЛЕИ.431169.016	ДТРВ-6.2 —				
_	Датчик тока ()*		_		
АЛЕИ.434312.	Набор резисторов R3		-		
_	Клеммник 15EDGK-3,81-02P-14-00Z(H)		_		
_	Клеммник 15EDGK-3,81-03P-14-00Z(H)		_		
*Указан коэффициент трансформации, тип датчика на усмотрение АО «Электрум АВ».					

^{4.2} Эксплуатационная документация

АЛЕИ.431169.012 ПС

4.3 Дополнительные сведения о комплектности

Варианты комплектности изделия представлены в таблице 7.

Таблица 7 – Варианты комплектности изделия

Исполнение	Комплектность
	Драйвер ДТРВ-6.2-DIN1;
ПТО (без токовой защиты)	Клеммники 15EDGK-3,81-02P-14-00Z(H) 4 шт.;
	Клеммники 15EDGK-3,81-03P-14-00Z(H) 3 шт.
	Драйвер ДТРВ-6.2-DIN1 1 шт.;
	Датчики тока (1:2000) 3 шт.;
ПТ1 (токовая защита в диапазоне от 40 до 220 А)	Набор резисторов R3 из 10 шт. (согласно таблице 4);
	Клеммники 15EDGK-3,81-02P-14-00Z(H) 4 шт.;
	Клеммники 15EDGK-3,81-03P-14-00Z(H) 3 шт.
	Драйвер ДТРВ-6.2-DIN1 1 шт.;
	Датчики тока (1:6000) 3 шт.;
ПТ2 (токовая защита в диапазоне от 250 до 700 А)	Набор резисторов R3 из 10 шт. (согласно таблице 5);
	Клеммники 15EDGK-3,81-02P-14-00Z(H) 4 шт.;
	Клеммники 15EDGK-3,81-03P-14-00Z(H) 3 шт.

5 Сведения об утилизации

Утилизация изделия (переплавка, захоронение, перепродажа) производится в порядке, установленном Законами РФ: от 04 мая 1999 г. № 96-ФЗ «Об охране атмосферного воздуха», от 24 июня 1998 г. № 89-ФЗ «Об отходах производства и потребления», а также другими общероссийскими и региональными нормами, правилами, распоряжениями и пр., принятыми во исполнение указанных законов.