

09.12.2013 DR280P-B4 Rev1

DRIVE OF IGBT AND MOSFET TRANSISTORS DR280P–B4

USER'S MANUAL

5 Naugorskoe highway, Orel, 302020, Russia Tel. +7(4862) 44-03-44, Fax +7(4862) 47-02-12 E-mail: <u>mail@electrum-av.com</u>

CONTENTS

1 OVERVIEW	3
2 DRIVER COMPOSITION	3
3 FUNCTIONAL DRIVER FEATURES	
4 BASIC AND MAXIMUM PERMISSIBLE PARAMETERS	6
5 DRIVER OPERATION	7
6 GRAPHS EXPLAINING DRIVER OPERATION	9
7 PRECIOUS METALS CONTENT	9
8 OPERATION RECOMMENDATIONS	9
9 RELIABILITY REQUIREMENTS	10

This document is a user's manual with a description of characteristics of this product for which are warranted. All the products in the production process pass a complete set of electrical tests, which are performed twice, once before encapsulation, and then again after it. Tests carried out by "Electrum AV" are exhaustive and include 100% control at the final testing.

Any such warranty is provided only in accordance with the terms of the supply agreement (supply contract or other documents in accordance with applicable law). The information presented in this document does not provide warranties and liability of "Electrum AV" by the use of such information and the suitability of products for your equipment. The data contained in this document are intended exclusively for technically trained staff. You and your technical expert will have to evaluate the suitability of the product for the application and the completeness of the product data, in connection with this application.

Any products of "Electrum AV" are not permitted for the use in devices and life support systems and special equipment without the prior written consent of "Electrum AV".

If you need information about the product, which is not shown in this user's manual or which concerns the specific application of our product, please contact the sales office to the manager who is responsible for your enterprise.

Engineers "Electrum AV" have a lot of experience in the design, manufacture and application of powerful force devices and smart drivers and has already implemented a large number of individual decisions. If you need power modules and drivers that are not included in the package, as well as products with differences from the standard devices in specifications or design, please contact to our managers and specialists who will offer you best solution for your application.

"Electrum AV" reserves the right to make changes without notice in this document to improve the reliability, functionality and design improvement.

1 OVERVIEW

Driver of powerful transistors with field control is intended to control of two powerful transistors with field control (MOSFET or IGBT). The driver is an amplifier-former of transistors gate control signals with frequency up to 50 kHz. The driver includes built-in galvanic isolated DC-DC converter, providing necessary levels of enabling and disabling voltages on the transistor's gate. The driver is the full analogue of driver **«Sky-per32Pro»**.

2 DRIVER COMPOSITION

2.1 The driver – a circuit plate with installed a driver module (DM), performed in a hermetic plastic housing, necessary tuning elements and connectors for connection of controlled transistor and control signals.

2.2 The driver contains the following functional parts:

- 1 Supply voltage stabilizer of driver with protection against abnormal turn-on polarity;
- 2 Build-in DC-DC converter with stabilization of enabling and disabling voltage level on controlled transistors gates;
- 3 Input logics;
- 4 Control circuit of control circuit gate;
- 5 Undervoltage and overvoltage protection circuit on controlled transistor gate;
- 6 Controlled transistor protection circuit against overcurrent.

3 FUNCTIONAL DRIVER FEATURES

3.1 The driver provides the following driving, controlling and protecting functions of controlled transistor:

- 1 Saturation voltage control on controlled transistor collector, its protective turn-off when leaving saturation state;
- 2 Threshold regulation of protective turn-off on saturation voltage;
- 3 Smooth driver junction from active state to inactive one when an "emergency" (leaving controlled transistor of saturation mode);
- 4 Control blocking when an "emergency"
- 5 Emergency signaling;
- 6 Simultaneous turn-on blocking of upper and lower arms;
- 7 Switching delay of upper and lower arms;
- 8 Switching delay regulation of upper and lower arms;
- 9 Driver supply voltage control (built-in comparators) on DC-DC converter output.

3.2 Overall drawing is shown at Figure 1, driver functional is presented at Figure 2.

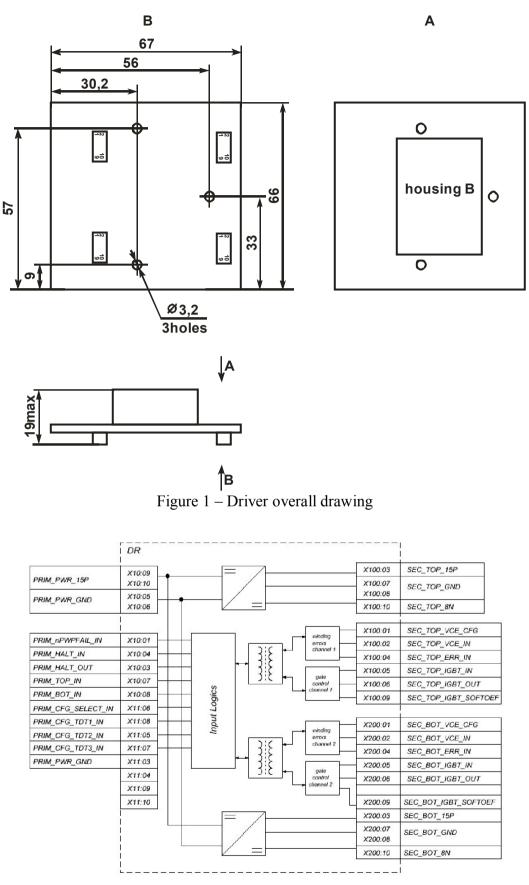


Figure 2– Driver functional circuits

^{3.3} Outputs description is shown in Table 1.

Outputs	Outputs assignment	Symbol
X10.01	Drain input. Driver drain is formed with an external signal. 0V – blocking; 15V - enable	PRIM_nPWRFAIL_IN
X10.02		
X10.03	Driver readiness state output. 0V –ready to operation. 15V –not ready to operation.	PRIM_HALT_OUT
X10.04	Driver operation enable input. Enable is formed with external signal. 0B – enable. 15B – disable.	PRIM_HALT_IN
X10.05	Ground of power and controlling circuits	PRIM_PWR_GND
X10.06	Ground of power and controlling circuits	PRIM_PWR_GND
X10.07	Upper switch input signal (0V, 15V)	PRIM_TOP_IN
X10.08	Lower switch input signal (0V, 15V)	PRIM_BOT_IN
X10.09	Driver supplying voltage (+15V±5%)	PRIM_PWR_15P
X10.10		
X11.01		
X11.02		
X11.03	Ground of power and controlling circuits	PRIM_PWR_GND
X11.04	Ground of power and controlling circuits	PRIM_PWR_GND
X11.05	Adjusting of blocking time bit 2	PRIM_CFG_TDT2_IN
X11.06	Channel blocking disable output	PRIM CFG SELECT IN
X11.07	Adjusting of blocking time bit 3	PRIM_CFG_TDT3_IN
X11.08	Adjusting of blocking time bit 1	PRIM_CFG_TDT1_IN
X11.09	Ground of power and controlling circuits	PRIM_PWR_GND
X11.10	Ground of power and controlling circuits	PRIM_PWR_GND
X100.01	Adjusting of saturation voltage control circuit on control transistor (1 channel)	SEC_TOP_VCE_CFG
X100.02	Saturation voltage control circuit on controlled transistor (1 channel)	SEC_TOP_VCE_IN
X100.03	+15V 1 channel	SEC_TOP_15P
X100.04	Error signal output (open collector)	SEC_TOP_ERR_IN
X100.05	Driver output of 1 channel with adjusting of turn-on time	SEC_TOP_IGBT_ON
X100.06	Driver output of 1 channel with adjusting of turn-off time	SEC_TOP_IGBT_OFF
X100.07	Output signals ground output of 1 channel	SEC_TOP_GND
X100.08	Output signals ground output of 1 channel	SEC_TOP_GND
X100.09	Smooth turn-off adjustment output of 1 channel	SEC_TOP_IGBT_SOFTOFF
X100.10	-7V 1 channel	SEC_TOP_8N
X200.01	Saturation voltage control circuit adjustment on controlled transistor (2 channel)	SEC_BOT_VCE_CFG
X200.02	Saturation voltage control circuit on control transistor (2 channel)	SEC_BOT_VCE_IN
X200.03	+15V 2 channels	SEC_BOT_15P
X200.04	Error signal output (open collector)	SEC_BOT_ERR_IN
X200.05	Driver output of 2 channel with turn-on time adjustment	SEC_BOT_IGBT_ON
X200.06	Driver output of 2 channel with turn-off time adjustment	SEC_BOT_IGBT_OFF
X200.07	Ground of 2 channel output signals	SEC_BOT_GND
X200.08	Ground of 2 channel output signals	SEC_BOT_GND
X200.09	Smooth turn-off adjustment output of 2 channel	SEC_BOT_IGBT_SOFTOFF
X200.10	-7V 2 channel	SEC_BOT_8N

4 BASIC AND MAXIMUM PERMISSIBLE PARAMETERS

Parameter	Symbol	Unit		Value		Notes
Tarameter	-		min	typ.	max	10005
		it character			1	T
Nominal supply voltage	U_S	V	13.5	15	16.5	
Maximum current consumption	Is	mA			200	f = 0 Hz
Power of built-in supply source of	P _{DC-DC}	W	4			for each channel
driver module output part	Voltage mon	itar abaraat	oristics			
Turn-off threshold	U _{UVLO+}	V			12	DC-DC output
Turn-on threshold	UUVLO-	V	13		12	DC-DC output
Tum-on uneshold	Control inp		-			DC-DC output
	Control mp		3	5	5.6	
Input voltage of high level	U_IH	V	9			
Innut register as	D	kΩ	9	15	16.8	
Input resistance	R _{IN}			5.9		
Circulation on deliver 1 4	I ime c	haracteristi	US			
Signal turn-on delay time between input and output	td on(in-out)	μs		1		see Figure 7
Signal turn-off delay time between	td off (in-out)	μs		1		see Figure 7
input and output		P				
«Dead time» between signal			1.5		4.5	set by consumer;
changes on outputs of first and	t_{TD}	μs	1.5		4.5	see Section 6
second channel						1 1
Maximum operating frequency	f_{\max}	kHz			50	no-load; see Figure 5
	Ū.	J mail				
Blocking time of fall voltage control	4		1		10	
on controlled transistor in open state	t _{BLOCK1}	μs	1		10	
Blocking time of controlled transistor				2		
after "emergency"	t_{BLOCK2}	S		3		
Transistor smooth emergency	4				2	
shutdown time	toff	μs			2	
I	Outpu	t parameter	'S			
High level output voltage	U _{OH}	V	+14	+16	+18	in all range of
Low level output voltage	U _{OL}	V	-8	-7	-5	permissible loads
Maximum output pulse current	I _{Omax}	А	-8		+8	
Mean output current	I _O	mA			160	for each channel
Output signal rise time	t _r	ns			200	
Output signal fall time	t _f	ns		1	200	no-load
Maximum current of status						
output «Error»	I _{ERR max}	mA			20	
Maximum voltage of status					_	
output «Error»	U _{ERR max}	V			30	
Residual voltage on signal						_
output «Error»	$U_{O ERR}$	V	0	0.3	0.7	at $I_{ERR} = 20 \text{ mA}$
Threshold voltage on measuring in-				1		
put MC, causing emergency	Th	V		5.8		
	U_{MC}	I V		1 .0	1	1

Continuation of Table 2					
	Insulatio	on parameter	rs		
Maximum permissible reverse vol- tage on output "MC"	U _{R(MC)}	V		2000	
Insulation voltage between input and output	U _{ISO(IN-OUT)}	V		4000	DC, 1 minute
Insulation voltage between outputs of first and second channels	U _{ISO(OUT1-} OUT2)	V		2000	DC, 1 minute
Critical rate of voltage change on output	(dU/dt) _{cr}	kV/µs		20	
	Operating and	storing para	ameters		
Operating temperature range	T _A	°C	-45	+85	
Storing temperature	Ts	°C	-60	+100	
Параметры управляемого транзистора					
Maximum permissible voltage of controlled transistor	U _{CE} (U _{DS})	V		1700	

5 DRIVER OPERATION

Delivery of «log.1» to controlling input « PRIM_TOP_IN » or « PRIM_BOT_IN » will lead to opening of corresponding controlled transistor. Open state voltage fall increasing by more than U_{ms}^{Th} per time, exceeding t_{BLOCK1}, will lead to protection operation of open state voltage fall increasing (when current overload).

At "emergency" the transistor will open that is connected in accordance with the scheme with open collector (output «Error»). In 70 ms emergency reset will be performed by internal circuit of emergency reset and on rising edge of control signal «IN» the controlled transistor will be opened. If the emergency cause was not disposed then the protection cycle will be repeated.

Driver supply voltage decrease to protection operation threshold level against driver supply undervoltage « U_{uvlo-} » will lead to closing of controlled transistor regardless of input control signals. Control signals will recover on protection operation threshold against driver supply undervoltage « U_{uvlo+} ».

When delivering the signals to the outputs «PRIM_TOP_IN» or «PRIM_BOT_IN» simultaneously «log. 1» there will be a control blocking and the controlled transistors will be closed, wherein the alarm about being a mistake is not appear.

Diagram explaining the driver operation is shown at Figures 3 and 4.

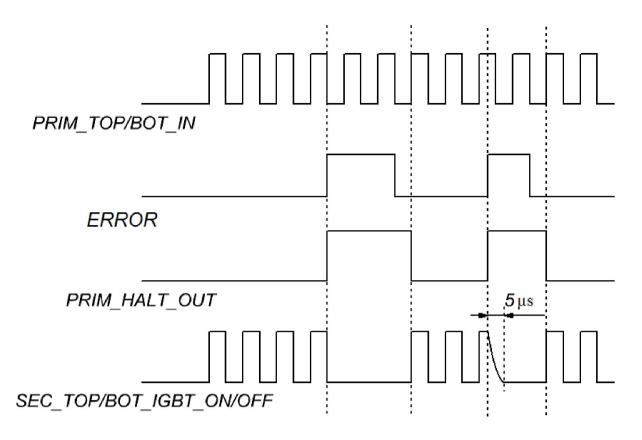


Figure 3 – Operating diagram of one driver's channel



Figure 4 – Operating diagram of two driver's channels

The value of "dead time" is set by installing the outputs «PRIM_CFG_TDT1_IN», «PRIM_CFG_TDT2_IN», «PRIM_CFG_TDT3_IN» (see Table 3).

----- output is not used

0V - output is connected to ground output.

Table 5 Setting dead time value					
"Dead time" be- tween channels (µs)	PRIM_CFG_TPT1_IN	PRIM_CFG_TPT2_IN	PRIM_CFG_TPT3_IN	PRIM_CFG_SELECT_IN	
1	0 V	0 V	-	-	
1.5	0 V	0 V	0 V	-	
2	0 V	-	-	-	
2.5	0V	-	0 V	-	
3	-	0V	-	-	
3.5	-	0 V	0 V	-	
4	-	-	-	-	
4.5	-	-	0 V	-	
without channels' blocking	-	-	-	0V	

Table 3 – setting "dead time" value

6 GRAPHS EXPLAINING DRIVER OPERATION

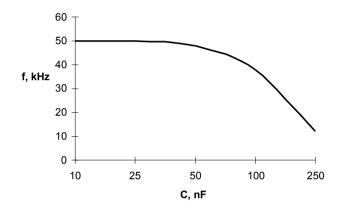


Figure 5 – Graph of driver safe operation area (with gate resistor 5 Ω)

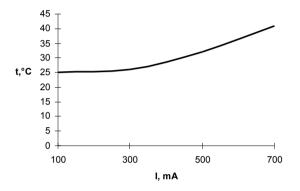


Figure 6 – Graph of driver housing temperature versus current consumption

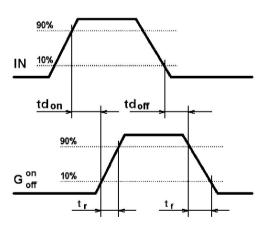


Figure 7 – Diagram explaining driver time characteristics where IN – input control signal; G – signal on controlled transistor gate

7 INFORMATION ABOUT PRECIOUS METALS

Precious metals are not contained.

8 INSTRUCTIONS FOR USE

8.1 Tolerance requirements at mechanical impacts.

Mechanical impacts for drivers in accordance with qualifying standards of controlled power transistors are shown in Table 4.

T 11 4 D .	, 1 ·		1
Table 4 - Drivers	tolerance requirem	ents to mechanica	I impact factors
	concruitee requirem	viito to incontantoa	

External exposure factors	External exposure factor value
Sinusoidal vibration:	
- frequency range, Hz;	0.5 - 100
- acceleration amplitude, m/s^2 (g)	150 (15)
Mechanical shock of single action:	
- peak shock acceleration, m/s^2 (g);	40 (4)
- pulse duration of shock acceleration, ms	50

8.2 Tolerance requirements at climatic impacts.

Climatic impacts in accordance with qualifying standards of controlled power transistors are shown in Table 5.

Climatic factor	Climatic factor value
Lower ambient temperature: - operating, °C; - maximum, °C Higher ambient temperature: - operating, °C; - maximum, °C	minus 45 minus 60 +85 +100
Relative humidity with temperature 35 °C without moisture condensation, %, max Ambient temperature change, °C	98 from minus 60 до +100

9 RELIABILITY REQUIREMENTS

The manufacturer guarantees the quality of the module all the requirements of the user's manual if the consumer observes terms and conditions of storage, mounting and operation, as well as guidance on the application specified in the user's manual.

Operating warranty is 2 years from the acceptance date, in the case of requalification – from the date of the requalification.

Reliability probability of drivers for 25000 hours must be at least 0.95.

Gamma-percent life must be no less than 50000 hours by $\gamma = 90$ %.

Gamma-percent service life of the modules, subject to cumulative operating time is not more than gamma-percent life, not less than 10 years, at $\gamma = 90$ %.

Gamma-percent storageability time of the modules, at $\gamma = 90$ % and storing – 10 years.

5 Naugorskoe highway, Orel, 302020, Russia Tel. +7(4862) 44-03-44, Fax +7(4862) 47-02-12 E-mail: <u>mail@electrum-av.com</u>