

01.01.2013 Modules E3.doc

TRANSISTOR MODULES IGBT IN DESIGN VERSION E3-1, E3-2

USER'S MANUAL

5 Naugorskoe highway, Orel, 302020, Russia Tel. +7(4862) 44-03-44, Fax +7(4862) 47-02-12 E-mail: <u>mail@electrum-av.com</u>

1. APPLICATION AND PRODUCED MODULES	3
2. GENERAL DESCRIPTION	5
3. BASIC PARAMETERS	5
4. INSTRUCTIONS FOR USE	7
5. RELIABILITY REQUIREMENTS	8
6. OVERALL AND CONNECTING DIMENSIONS	9

This document is a passport with a description of characteristics of this product for which are warranted. All the products in the production process pass a complete set of electrical tests, which are performed twice, once before encapsulation, and then again after it. Tests carried out by "Electrum AV" are exhaustive and include 100% control at the final testing.

Any such warranty is provided only in accordance with the terms of the supply agreement (supply contract or other documents in accordance with applicable law). The information presented in this document does not provide warranties and liability of "Electrum AV" by the use of such information and the suitability of products for your equipment. The data contained in this document are intended exclusively for technically trained staff. You and your technical expert will have to evaluate the suitability of the product for the application and the completeness of the product data, in connection with this application.

Any products of "Electrum AV" are not permitted for the use in devices and life support systems and special equipment without the prior written consent of "Electrum AV".

If you need information about the product, which is not shown in this data sheet or which concerns the specific application of our product, please contact the sales office to the manager who is responsible for your enterprise.

Engineers "Electrum AV" have a lot of experience in the design, manufacture and application of powerful force devices and smart drivers and has already implemented a large number of individual decisions. If you need power modules and drivers that are not included in the package, as well as products with differences from the standard devices in specifications or design, please contact to our managers and specialists who will offer you best solution for your application.

"Electrum AV" reserves the right to make changes without notice in this document to improve the reliability, functionality and design improvement.

1. APPLICATION AND PRODUCED MODULES

IGBT-modules in design versions «E3-1» and «E3-2» are assemblies IGBT-transistors and FRD-diodes are intended to commutate power loads as part of converters with a maximum peak voltage 600 V or 1200V and DC up to 600 A. IGBT-modules are presented with the following versions:

M9 – single switch shunted with reverse FRD. The module is produced with maximum DC 200,300,400, 600A and peak voltage 1200V.

M10 – low switch- series connected IGBT- transistor shunted with reverse FRD and series connected FRD(common collector-anode). The module is produced with maximum DC 300A and peak voltage 600 V and current 150,200,300,400A with peak voltage 1200V.

M11 – upper switch- series connected IGBT-transistor shunted with reverse FRD and series connected FRD(common emitter- cathode). The module is produced with maximum DC 300A and peak voltage 600V and current 150,200,300,400A with peak voltage 1200V.

M12 – two series connected IGBT-transistor (half-bridge) shunted with reverse FRDs. The module is produced with a number of maximum DC 200,300,400,600 A with peak voltage 1200V.

In dependence on the current, the voltage and the version the modules are produced in designs that specified in Table 1.1. The modules are produced only in the versions where when crossing the module type line and the current column is specified the overall dimension corresponding to the version.

Madula tyma	Valtaga D		Current, A						
wiodule type	voltage, b	150	200	300	400	600			
M9	1200		Fig.6.1	Fig.6.1	Fig.6.1	Fig.6.1			
M10	600			Fig.6.2					
IVIIU	1200	Fig.6.2	Fig.6.2	Fig.6.2	Fig.6.2				
M11	600			Fig.6.2					
IVIII	1200	Fig.6.2	Fig.6.2	Fig.6.2	Fig.6.2				
M12	600		Fig.6.2	Fig.6.2	Fig.6.2	Fig.6.2			
IVI I Z	1200	Fig.6.2	Fig.6.2	Fig.6.2	Fig.6.2				

Table1.1 – Produced IGBT-modules and and corresponding to them overall dimensions

On Figure 1.1 is shown modules name explanation.

Figure 1.1 – Modules name explanation

For example, module M12-100-12-E3: a half-bridge with maximum permissible collector-emitter voltage 1200 V, maximum permissible DC 200 A with version «E3».

The modules are analogues of power modules produced by «Infineon» in accordance with Tables 1.2 - 1.4.

140							
Class, V	Current,A	SEMIKRON	Infineon	"Electrum AV", CJSC			
		Sin	igle switch				
1200	200	SKM300GAL063D		M9-200-12			
1200	300	SKM200GAL126D	FZ300R12KE3G	M9-300-12			
1200	400	SKM200GAL12E4	FZ400R12KE3	M9-400-12			
1200	600	SKM800GA126D	FZ600R12KE3	M9-600-12			

Table 1.2 –	Conformity	v modules	in ł	nusing	"F3_2»
	Comornin	y modules	III I	lousing	<u>«E3-2»</u>

Table 1.3 – Conformity modules in housing «E3-1»

Class, V	Current,A	SEMIKRON	Infineon	"Electrum AV", CJSC			
	Low switch						
600	300	SKM300GAL063D	FD300R06KE3	M10-300-6			
		Up	per switch				
600	300	SKM300GAR063D		M11-300-6			
	Half-bridge						
600	200	SKM200GB063D	FF200R06KE3	M12-200-6			
600	300	SKM300GB063D	FF300R06KE3	M12-300-6			
600	400	SKM400GB066D	FF400R06KE3	M12-400-6			
600	600	SKM600GB066D		M12-600-6			

Table 1.4 – Conformity of 12 class modules in housing «E3-1»

Class, V	Current,A	SEMIKRON	Infineon	"Electrum AV", CJSC	
Low switch					
1200	150	SKM200GAL126D		M10-150-12	
1200	200	SKM200GAL12E4	FD200R12KE3	M10-200-12	
1200	300	SKM300GAL12E4	FD300R12KE3	M10-300-12	
1200	400	SKM400GAL12E4	FD400R12KE3	M10-400-12	
		Up	per switch		
1200	150	SKM200GAR125D		M11-150-12	
1200	200	SKM200GAR12E4	DF200R12KE3	M11-200-12	
1200	300	SKM300GAR12E4	DF300R12KE3	M11-300-12	
1200	400	SKM400GAR12E4	DF400R12KE3	M11-400-12	
		Ha	alf-bridge		
1200	150	SKM200GB126D	FF150R12KE3G	M12-150-12	
1200	200	SKM300GB126D	FF200R12KE3	M12-200-12	
1200	300	SKM400GB126D	FF300R12KE3	M12-300-12	
1200	400	SKM600GB126D	FF400R12KE3	M12-400-12	

2. GENERAL DESCRIPTION

In dependence on the module type the electrical circuits of the modules are different; on Figures 2.1 - 2.4 are represented possible variants of the modules circuits.

Attention! When transporting the gate and emitter must be short-circuited!

3. BASIC PARAMETERS

Basic electrical parameters and maximum permissible parameters at temperature $25^{\circ}C$ are shown in Table 3.1.- 3.2

Parameter name, Unit	a 1 1	Module maximum DC, A				
	Symbol	200	300	400	600	
Basic	Basic characteristics					
Collector-emitter breakdown (min), V	V _{(BR)CES}		60	00		
Power circuit DC voltage (max), V	V _{DC}		35	50		
Power circuit DC (max), A	I _{DC}	200	300	400	600	
Junction-transistor housing thermal resistance (max), °C/W	R _{T(j-c) VT}	0,15	0,15	0,1	0,06	
Junction-diode housing thermal resistance (max), °C/W	R _{T(j-c) VD}	0,25	0,25	0,2	0,12	
Power dissipation (max), W	P _D	830	840	1250	2100	
Circuit-isolation electrical strength (DC), V	V _{ISOL}		40	00		
Static	characterist	tics				
Gate-emitter threshold voltage, V	V _{GE (th)}	4,56,5	4,56,5	4,56,5	4,56,5	
Gate leakage current (max), nA	I _{GES}	<u>+</u> 500	<u>+</u> 500	<u>+</u> 500	<u>+</u> 500	
Collector-emitter saturation voltage (typical), V	V _{CE(on)}	1,7	1,7	1,7	1,7	
Collector-emitter saturation voltage (max), V	V _{CE(on)}	2,2	2,2	2,4	2,4	
Collector leakage current (max), µA	I _{CES}	100	100	300	300	
Dynami	c characteri	stics				
Input capacitance (typical), pF	Cies	15000	18000	25000	42000	
Output capacitance (typical), pF	Coes	1500	1500	2000	4000	
Transfer capacitance (typical), pF	Cres	1000	1000	1500	3000	
Switch-on delay time (max), ns	t _{d(on)}	300	150	150	250	
Rise time (max), ns	t _r	150	80	80	120	
Switch-off delay time (max), ns	t _{d(off)}	700	700	700	900	
Fall time (max), ns	t _f	150	150	150	150	
Switch-on loss energy (max), mJ	E _{ON}	20	25	30	70	
Switch-off loss energy (max), mJ	E _{OFF}	30	35	60	150	
Gate common charge (typical), nC	Q _G	1500	1800	1800	3000	

Table 3.1 – Basic and maximum permissible modules of 6th class parameters

Table 3.1 continuation

Reverse diode characteristics					
Direct voltage fall (typical), V	V _F	2,1	2,1	2,1	2,1
Direct diode current (max), A	I _F	200	300	400	600
Pulse diode current at $t_{pul} = 1 \text{ ms} (\text{max})$, A	I _{FM}	600	900	1200	1800
Reverse recovery current (typical), A	I _{RR}	250	350	450	700
Recovery time (typical), ns	t _{RR}	300	250	300	300
Maximum permissible modes					
Collector-emitter voltage (max), V	V _{CES}	600			
Gate-emitter voltage (max), V	V _{GE}	+20			
Direct collector current at $T_{amb} = 25 \text{ °C} (max)$, A	I _C	240	350	500	700
Direct collector current at $T_{amb} = 100 \text{ °C}$ (max), A	I _C	200	300	400	600
Pulse collector current at $t_{pul} = 1 \text{ ms} (\text{max})$, A	I _{CM}	600	900	1200	1800
Junction temperature (max), °C	Tj	150			

Table 3.2 - Basic and maximum permissible parameters of modules of 12-th class

Parameter name, Unit	Symbol		Module maximum DC, A		
	Symbol	150	200	300	400
Basi	c characterist	ics			
Collector-emitter breakdown voltage (min), V	V _{(BR)CES}		12	00	
Power circuit direct voltage (max), V	V _{DC}		6	50	
Power circuit DC (max), A	I _{DC}	150	200	300	400
Junction-transistor housing thermal resistance, °C/W	R _{T(j-c) VT}	0,2	0,15	0,15	0,1
Junction-diode housing thermal resistance, °C/W	R _{T(j-c) VD}	0,4	0,25	0,25	0,2
Power dissipation (max), W	P _D	625	830	840	1250
Isolation strength (DC), V	V _{ISOL}		40	00	
Stati	c characterist	tics			
Gate-emitter threshold voltage, V	V _{GE (th)}	4,56,5	4,56,5	4,56,5	4,56,5
Gate leakage current (max), nA	I _{GES}	<u>+</u> 500	<u>+</u> 500	<u>+</u> 500	<u>+</u> 500
Collector-emitter saturation voltage (typical), V	V _{CE(on)}	1,7	1,7	1,7	1,7
Collector-emitter saturation voltage (max), V	V _{CE(on)}	2,2	2,2	2,2	2,4
Collector leakage current (max), µA	I _{CES}	100	100	100	300
Dynan	nic characteri	stics			
Input capacitance (typical), pF	Cies	6000	15000	18000	25000
Output capacitance (typical), pF	Coes	450	1500	1500	2000
Transfer capacitance (typical), pF	Cres	300	1000	1000	1500
Switch-on delay time (max), ns	t _{d(on)}	200	300	150	150
Rise time (max), ns	t _r	200	150	80	80
Switch-off delay time (max), ns	$t_{d(off)}$	700	700	700	700
Fall time (max), ns	t _f	150	150	150	150
Switch-on loss energy (max), mJ	E _{ON}	18	20	25	30
Switch-off loss energy (max), mJ	E _{OFF}	24	30	35	60
Common gate charge (typical), nC	Q _G	800	1500	1800	1800
Reverse	diode charact	eristics			
Direct voltage fall (typical), V	$V_{\rm F}$	2,1	2,1	2,1	2,1
Diode direct current (max), A	I _F	150	200	300	400
Diode pulse current at $t_{pul} = 1 \text{ ms} (\text{max})$, A	I_{FM}	450	600	900	1200
Reverse recovery current (typical), A	I _{RR}	125	250	350	450
Recovery time (typical), ns	t _{RR}	250	300	250	300
Maximu	n permissible	modes			
Collector-emitter voltage (max), V	V _{CES}		12	00	
Gate-emitter voltage (max), V	V_{GE}		+2	20	
Collector DC at T = 25 °C (max), A	I _C	175	240	350	500
Collector DC at T = 100 °C (max), A	I _C	150	200	300	400
Collector pulse current at $t_{pul} = 1 \text{ ms (max)}, \overline{A}$	I _{CM}	450	600	900	1200
Junction temperature (max), °C	Tj		1:	50	

4. INSTRUCTIONS FOR USE

General requirements

It is recommended to operate the module at operating value of average current not more than 80% from the mentioned in the name of the module and junction temperature not more than $(70 \div 80)\%$ from maximum one.

It is not allowed operating the modules in modes at simultaneous impacting two or more maximum permissible parameters' values.

In the electrical circuit of the equipment with use of the modules should be provided a fast-recovery protection against overloads, SCs and commutating overloads.

Module mounting

The module is mounted in the equipment to cooler (chassis, application housing, metal plates, etc.) in any orientation with screws M6 with torque (5 ± 0.5) N·m, with obligatory installation of flat and spring washers. The module should be located in such a way to protect it against additional heat from neighboring elements. The planes of cooler ribs should be oriented in the direction of air flow.

The contact area of the cooler should have roughness not more than 2.5 μ m and flatness tolerance– not more than 30 μ m. Cooler surface should not have any rough edges, honeycombs. There should not be extraneous particles between the module and cooler. To improve the heat balance the module installation to mounting area or cooler should be carried out by instrumentality of heat conducting pastes or having similar heat conducting properties.

When mounting, you should provide uniform pressure of module housing to cooler. For this purpose you should tighten all screws uniform in 2-4 motions by turns: first, located on one diagonal, then on the other one. Disassembling the module the screw tightening should be done the reverse order. Not earlier than in 3 hours after mounting the screws should be rotated to the end, keeping the prescribed torque, because the part of heat conducting paste under pressure will outflow and the fastening can fail.

You can install the several modules without additional insolating spacer to one cooler, on condition that voltage between outputs of different modules will not exceed the minimum value of isolation breakdown voltage of each of them or when cooler is grounded.

Connection to module

Electric wires and cables will be connected to power contacts of the module by means of screws M6 with torque (4 ± 0.5) N·m and the washers that are supplied in the pack.

Power wires should be connected by means of connectors with corrosion-inhibiting cover, which are purified of foreign layers. When screws (bolts) are tightened it is recommended to fasten the connection with paint. It is recommended to tighten screws (bolts) repeatedly in 8 days and in 6 weeks after commencement of operating. Afterwards tightening should be controlled at least once a half year.

The control module outputs are intended for mounting by means of soldering or with split connectors. Permissible number of module outputs' re-soldering during electronic (assembly) edit is three. Outputs soldering should be performed at temperature not higher than 235 °C. Soldering duration is not longer than 3 s.

When mounting and operating it is necessary to make protection measures against static electricity impact; on mounting the personnel should use the ground bands and grounded low-voltage soldering irons with transformer supply.

Operating requirements

Module should be used under mechanical loads in accordance with Table 4.1.

External exposure factor	External exposure factor value
Sinusoidal vibration: - acceleration, m/s ² (g); - frequency, Hz	150 (15) 0,5 - 100
Multiple-acting mechanic shock:	40 (4)

Table 4.1 – Mechanical loads impact

- peak shock acceleration, m/s ² (g);	50
- SHOCK acceleration duration, ms	
Linear acceleration, m/s^2 (g)	5000 (500)

8

The module should be used under climatic loads in accordance with Table 4.2.

Table 4.2 – Climatic loads impact

Climatic factor	Climatic factor value
Reduced ambient temperature:	
- operating, °C;	- 40
- maximum, °C	- 45
High ambient temperature:	
- operating, °C;	+ 85
- maximum, °C	+100
Relative humidity at temperature 35 °C without	
moisture condensation, %, max	98

Safety requirements

1. Working with the module should only be performed by qualified personnel.

2. Do not touch the power terminals of the module when applying a voltage.

3. Do not connect or disconnect wires and connectors while the power to the circuit module is applying a voltage.

4. Don't touch the module's radiator if it is not grounded and it's applied a voltage.

5. Don't touch the cooler and the module's housing in time its operation thereby their temperature can be very high.

6. Immediately turn off the power supply of the module if it discharges smoke, odor or abnormal noises, check if the module correctly connected.

7. It is not allowed penetrating water and other liquids to the module.

5. RELIABILITY REQUIREMENTS

The manufacturer guarantees the quality of the module all the requirements of the passport if the consumer observes terms and conditions of storage, installation and operation, as well as guidance on the application specified in the passport.

Operating warranty is 2 years from the acceptance date, in the event of requalification – from the date of requalification.

Reliability probability of the module for 25000 hours must be at least 0.95.

Gamma percentage life (T γ) of module at $\gamma = 90\%$ in typical operation conditions should not be less than 50 000 hours within lifetime.

Gamma-percent service life of the modules, subject to cumulative operating time is no more than gamma-percent life, no less than 10 years, when $\gamma = 90$ %.

Gamma-percent storageability time of the modules, when $\gamma = 90 \% - 10$ years.

Figure 6.1- Overall dimensions of modules M9 (housing "E3-2")

Figure 6.2- Overall dimensions of modules M10 (housing "E3-1")

Figure 6.3- Overall dimensions of modules M11 (housing "E3-1")

Figure 6.4- Overall dimensions of modules M12 (housing "E3-1")

Precious metals are not contained.