www.electrum-av.com

MODULES FOR DC COMMUTATION MT14, MT15D, MT14PT, MT15PT

USER'S MANUAL

CONTENTS

1. APPLICATION AND PRODUCED MODULES	3
2. GENERAL DESCRIPTION	4
3. BASIC PARAMETERS	
4. INSTRUCTIONS FOR USE	11
5. RELIABILITY REQUIREMENTS	13
6. OVERALL AND CONNECTING DIMENSIONS	

This document is a user's manual with a description of characteristics of this product for which are warranted. All the products in the production process pass a complete set of electrical tests, which are performed twice, once before encapsulation, and then again after it. Tests carried out by "Electrum AV" are exhaustive and include 100% control at the final testing.

Any such warranty is provided only in accordance with the terms of the supply agreement (supply contract or other documents in accordance with applicable law). The information presented in this document does not provide warranties and liability of "Electrum AV" by the use of such information and the suitability of products for your equipment. The data contained in this document are intended exclusively for technically trained staff. You and your technical expert will have to evaluate the suitability of the product for the application and the completeness of the product data, in connection with this application.

Any products of "Electrum AV" are not permitted for the use in devices and life support systems and special equipment without the prior written consent of "Electrum AV".

If you need information about the product, which is not shown in this user's manual or which concerns the specific application of our product, please contact the sales office to the manager who is responsible for your enterprise.

Engineers "Electrum AV" have a lot of experience in the design, manufacture and application of powerful force devices and smart drivers and has already implemented a large number of individual decisions. If you need power modules and drivers that are not included in the package, as well as products with differences from the standard devices in specifications or design, please contact to our managers and specialists who will offer you best solution for your application.

"Electrum AV" reserves the right to make changes without notice in this document to improve the reliability, functionality and design improvement.

1. APPLICATION AND PRODUCED MODULES

Modules for DC commutation (semiconductor normally opened unipolar relay with transformer decoupling with low current and low switch-on time) of types MT14, MT15D, MT14PT, MT15PT are intended to use in automatics devices as a commutating element with maximum peak voltage up to 1200 V and DC up to 400 A. The modules for DC commutation (hereinafter modules) are represented with the following versions:

MT14A – a module based on MOSFET-transistor shunted with a reverse fast-recovery diode with control voltage 4...10~V.

MT14B – a module based on MOSFET-transistor shunted with a reverse fast-recovery diode with control voltage 10...30 V.

By the power switch types the modules MT14A(B) are represented with the following versions (specified maximum permissible values of currents and voltages):

Peak voltage 60 V with an amount of DC 10,20,40,60,80,120,200,240,300,400 A.

Peak voltage 100 V with an amount of DC 5,10,20,40,60,80,120,160,200,240,300,400 A.

Peak voltage 200 V with an amount of DC 5,10,20,30,40,60,80,120,160,200,240,320,400 A.

Peak voltage 250 V with an amount of DC 5,10,20,40,60,80,120,160,200,240 A.

MT15DA – a module based on IGBT-transistor shunted with a reverse fast-recovery diode with control voltage 4...10 V.

MT15DB – a module based on IGBT-transistor shunted with a reverse fast-recovery diode with control voltage 10...30 V.

By types of power switch the modules of MT15DA(B) are represented with following versions (specified maximum permissible values of currents and voltages):

Peak voltage 600 V with an amount of DC 5,10,20,30,40,60,80,120,160,180,240,300 A.

Peak voltage 1200 V with an amount of DC 5,10,20,40,60,80,120,160,180,240,300 A.

MT14PTA – a module based on MOSFET-transistor shunted with a reverse fast-recovery diode with control voltage 4...10 V, with inbuilt protections against overvoltage and current overload.

MT14PTB – a module based on MOSFET-transistor shunted with a reverse fast-recovery diode with control voltage 10...30 V, with inbuilt protections against overvoltage and current overload.

By types of power switch the modules of MT14PTA(B) are represented with following versions (specified maximum permissible values of currents and voltages):

Peak voltage 40 V with an amount of DC 10,20,60,90,120,150,240,320,400 A.

Peak voltage 60 V with an amount of DC 10,20,60,90,120,150,240,320,400 A.

Peak voltage 100 V with an amount of DC 5,10,20,40,60,90,120,150,180,240,320 A.

Peak voltage 200 V with an amount of DC 5,10,20,60,90,120,150,180,240 A.

Peak voltage 250 V with an amount of DC 5,10,20,30,40,50,60,90,120,150,180 A.

MT15PTA – a module based on IGBT-transistor shunted with a reverse fast-recovery diode with control voltage 4...10 V, with inbuilt protections against overvoltage and current overload.

MT15PTB – a module based on IGBT-transistor shunted with a reverse fast-recovery diode with control voltage 10...30 V, with inbuilt protections against overvoltage and current overload.

By types of power switch the modules MT15PTA(B) are represented with the following versions (specified maximum permissible values of currents and voltages):

Peak voltage 600 V with an amount of current 5,10,20,30,40,50,60,75,90,120,150,180,240 A.

Peak voltage 1200 V with an amount of current 5,10,20,30,40,50,60,75,90,120,150,180,240 A.

Depending on the current and version the modules MO16 are produced in the versions that are represented in Table 1.1. The modules are produced only in the versions where at crossing the class line (peak voltage of power switch, maximum permissible one) of the module and the current column is specified the overall dimension corresponding to the version.

Tymo	Class		Current, A																	
Type	Class	5	10	20	30	40	50	60	75	80	90	120	150	160	180	200	240	300	320	400
	0,6		6.1	6.1		6.1		6.1		6.1		6.2				6.3	6.3	6.4		6.4
MT14	1	6.1	6.1	6.1		6.1		6.1		6.1		6.2		6.2		6.3	6.3	6.4		6.4
W1114	2	6.1	6.1	6.1	6.1	6.1		6.1		6.1		6.2		6.2		6.3	6.3		6.4	6.4
	2,5	6.1	6.1	6.1		6.1		6.2		6.2		6.2		6.2		6.3	6.3			
MT15D	6	6.1	6.1	6.1	6.1	6.1		6.1		6.2		6.2		6.3	6.3		6.3	6.4		
MT15D	12	6.1	6.1	6.1		6.1		6.1		6.2		6.2		6.3	6.3		6.3	6.4		
	0,4		6.5	6.5				6.5			6.5	6.6	6.6				6.7		6.8	6.8
	0,6		6.5	6.5				6.5			6.5	6.6	6.6				6.7		6.8	6.8
MT14PT	1	6.5	6.5	6.5		6.5		6.5			6.6	6.6	6.6		6.7		6.7		6.8	
	2	6.5	6.5	6.5				6.6			6.6	6.6	6.7		6.7		6.7			
	2,5	6.5	6.5	6.5	6.5	6.6	6.6	6.6			6.6	6.6	6.6		6.7					
MT15PT	6	6.5	6.5	6.5	6.5	6.5	6.5	6.6	6.6		6.6	6.6	6.6		6.7		6.7			
W1115F1	12	6.5	6.5	6.5	6.5	6.5	6.6	6.6	6.6		6.6	6.6	6.6		6.7		6.7			

Table 1.1 – Produced modules MT14, 15 and corresponding to them overall dimensions

On Figure 1.1 is shown modules' names explanation.

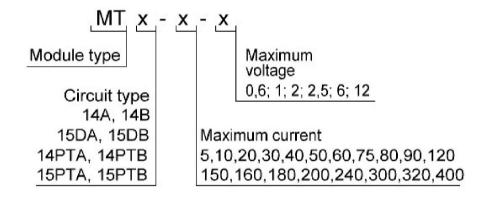


Figure 1.1 – Modules names explanation

For example, module MT15DA-80-12: a module with control voltage 4...10 V, with maximum permissible collector-emitter voltage 1200 V and maximum DC 80 A.

2. GENERAL DESCRIPTION

The modules MT14, MT15B don't have any inbuilt protections; the relays operate only in accordance with the control signal.

The modules MT14(15)PTA and MT14(15)PTB have inbuilt protections against overvoltage and current overload. The overvoltage protection is represented with a Zener diode installed in parallel with collector-gate circuit; when increasing the voltage (in collector-emitter circuit) set by the threshold Zener diode the power voltage opens up the transistor, thereby loading the circuit and decreasing voltage surge amplitude.

Current overload protection is represented with represented by a current collector resistor installed in the power circuit, with a comparison circuit and a reset circuit. When the current exceeds the set threshold during longer than 10 µs the control circuit closes the transistor for 5...20 ms (it depends on the value of overcurrent), after that the transistor opens again and if overload wasn't eliminated then the protection cycle repeats.

Functional circuits combined with switching circuits of modules MT14, 15 are represented on Figures 2.1 - 2.8.

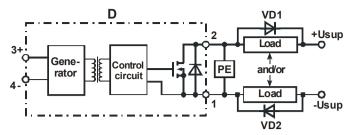


Figure 2.1 – Functional circuit of MT14 (figure 6.1)

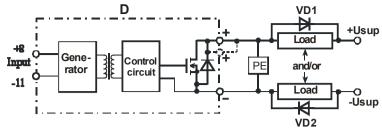


Figure 2.2 – Functional circuit of MT14 (figure 6.2,3,4)

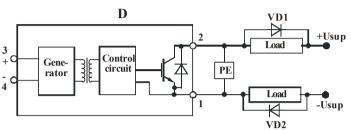


Figure 2.3 – Functional circuit of MT15D (figure 6.1)

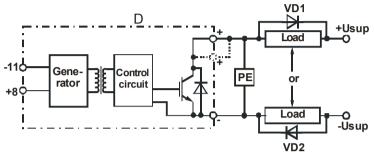


Figure 2.4 – Functional circuit of MT15D (figure 6.2,3,4)

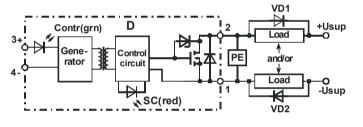


Figure 2.5 – Functional circuit of MT14PT (figure 6.5)

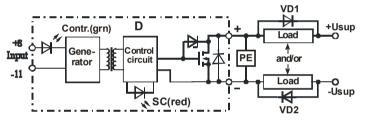
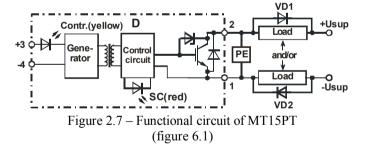
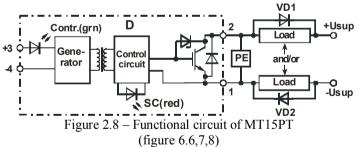




Figure 2.6 – Functional circuit of MT14PT (figure 6.6,7,8)

Where D - module; PE - protection element; VD1,VD2 - diodes (are installed at inductive load); B - active protection unit (provides voltage limitation on transistor drain (collector) on level that not higher than U_{lim}).

3. BASIC PARAMETERS

Basic parameters and maximum permissible parameters of the modules at temperature 25^{0} C are shown in Tables 3.1-3.16.

Table 3.1 – Basic and maximum permissible parameters of control of modules MT14, 15

Parameter name, unit	Symbol	MT14	MT15D	MT14PT	MT15PT			
Input current of ver. «A» at U _{IH} = 4 V (max), mA		7	7	50	25			
Input current of ver. «A» at U _{IH} = 10V (max), mA	ī	15	15	60	30			
Input current of ver. «B» at U _{IH} = 10 V (max), mA	I_{IN}	15	15	30	30			
Input current of ver. «B» at U _{IH} = 30 V (max), mA		20	20	40	40			
Switch-on voltage of ver. «A», V	ŢŢ		4	10				
Switch-on voltage of ver. «B», V	$ U_{IH}$		10	.30				
Switch-off voltage of ver. «A», V	11	-3.50.8						
Switch-off voltage of ver. «B», V	$ U_{IL}$	-3.50.8						
On / off duration (max), µs	t on / off	50 / 50	50 / 50	100 / 100	100 / 100			

Table 3.2 – Basic parameters of protections of modules MT14PT, MT15PT

Parameter name, unit	Symbol		
r ar ameter name, unit	Symbol	Value	Notes
Current protection operation delay (max), µs	$t_{d(SC)}$	10	
Blocking duration when operating of current protection (typ.), ms	$t_{\mathrm{B(SC)}}$	20	
	-(3-5)	For module	es with maximum
		c	current:
		7.5	5
		15	10
		30	20
		45	30
		60	40
		75	50
Current of protection operation against current overload (typ.), A	I_{SC}	90	60
		112	75
		135	90
		180	120
		225	150
		270	180
		360	240
		480	320
		600	400
		For mod	ules with class:
		36	0,4
		48	0,6
Voltage of protection operation against overvoltage (typ.), V	U_{AC}	80	1
voluge of protection operation against over voltage (typ.), v	OAC	145	2
		200	2,5
		480	6
		800	12

Table 3.3 – Basic and maximum permissible parameters of modules of 0,4 class – up to 90 A

Parameter name, unit	Symbol		Curre	ent, A						
		10	20	60	90					
Drain-source voltage (max), V	$ m V_{DSS}$		40							
Direct voltage of power circuit (max), V	$V_{ m DC}$		22							
DC of power circuit (max), A	I_{DC}	10	20	60	90					
Pulse current of power circuit (max), A	I_P	30	60	180	270					
Drain-source resistance in open state (max), $m\Omega$	R _{DS(on)}	10.5	10.5	1.6	1.6					
Direct voltage fall on reverse diode (max), V	V_{F}		1.	.3						
Leakage current of power switch (max), µA	I_{DSS}		50	0						
Junction temperature (max), °C	Tj		150							
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	2.7	1.6	1.0	0.7					
Insulation strength, (DC), V	$V_{\rm ISOL}$		10	00	•					

Table 3.4 – Basic and maximum permissible parameters of modules of 0,4 class – up to 400 A

Parameter name, unit	Symbol			Current, A		
		120	150	240	320	400
Drain-source voltage (max), V	$V_{ m DSS}$			60		
Direct voltage of power circuit (max), V	$V_{ m DC}$			22		
DC of power circuit (max), A	I_{DC}	120	150	240	320	400
Pulse current of power circuit (max), A	I_P	360	450	720	960	1200
Drain-source resistance in open state (max), $m\Omega$	R _{DS(on)}	1.83	1.83	1.1	0.8	0.4
Direct voltage fall on reverse diode (max), V	V_{F}			1.3		
Leakage current of power switch (max), µA	I_{DSS}			50		
Junction temperature (max), °C	T_{j}			150		
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	0.5	0.35	0.25	0.2	0.15
Insulation strength, (DC), V	$V_{\rm ISOL}$			1000		•

Table 3.5 – Basic and maximum permissible parameters of modules of 0,6 class – up to 80 A

Parameter name, unit	Symbol			Current, A		
		10	20	40	60	80
Drain-source voltage (max), V	$ m V_{DSS}$			60		
Direct voltage of power circuit (max), V	V_{DC}			35		
DC of power circuit (max), A	I_{DC}	10	20	40	60	80
Pulse current of power circuit (max), A	I_P	30	60	120	180	240
Drain-source resistance in open state (max), m Ω	R _{DS(on)}	60	28	12	3	6
Direct voltage fall on reverse diode (max), V	V_{F}			1.3		
Leakage current of power switch (max), µA	I_{DSS}			50		
Junction temperature (max), °C	T_{j}			150		
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	2.7	1.6	1.0	0.7	0.5
Insulation strength, (DC), V	$V_{ m ISOL}$			1000		

Table 3.6 – Basic and maximum permissible parameters of modules of 0,6 class – up to 400 A

Parameter name, unit	Symbol			Current, A		
		120	200	240	300	400
Drain-source voltage (max), V	$V_{ m DSS}$			60		
Direct voltage of power circuit (max), V	$V_{ m DC}$			35		
DC of power circuit (max), A	I_{DC}	120	200	240	300	400
Pulse current of power circuit (max), A	I_P	360	600	720	900	1200
Drain-source resistance in open state (max), m Ω	R _{DS(on)}	1.5	1.0	0.75	0.6	0.5
Direct voltage fall on reverse diode (max), V	V_{F}			1.3		
Leakage current of power switch (max), µA	I_{DSS}			200		
Junction temperature (max), °C	T_{j}			150		
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	0.35	0.25	0.2	0.15	0.12
Insulation strength, (DC), V	$V_{\rm ISOL}$			1000		

Table 3.7 – Basic and maximum permissible parameters of modules of 1 class – up to 80 A

Parameter name, unit	Symbol			Curre	nt, A			
	Symbol	5	10	20	40	60	80	
Drain-source voltage (max), V	$V_{ m DSS}$	100						
Direct voltage of power circuit (max), V	V_{DC}			60)			
DC of power circuit (max), A	I_{DC}	5	10	20	40	60	80	
Pulse current of power circuit (max), A	I_P	15	30	60	120	180	240	
Drain-source resistance in open state (max), $m\Omega$	R _{DS(on)}	200	120	55	27	20	14	
Direct voltage fall on reverse diode (max), V	V_{F}			1.	3			
Leakage current of power switch (max), µA	I_{DSS}			50)			
Junction temperature (max), °C	T_j	150						
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	3.3	2.1	1.3	0.9	0.6	0.5	
Insulation strength, (DC), V	V_{ISOL}		•	100	00	•	•	

Table 3.8 – Basic and maximum permissible parameters of modules of 1 class – up to 400 A

Parameter name, unit	Symbol			Curre	nt, A				
	Symbol	120	160	200	240	300	400		
Drain-source voltage (max), V	$V_{ m DSS}$	100							
Direct voltage of power circuit (max), V	$V_{ m DC}$			60)				
DC of power circuit (max), A	I_{DC}	120	160	200	240	300	400		
Pulse current of power circuit (max), A	I_P	360	480	600	720	900	1200		
Drain-source resistance in open state (max), $m\Omega$	R _{DS(on)}	8	6	5	4	2.5	1.8		
Direct voltage fall on reverse diode (max), V	V_{F}			1.	3				
Leakage current of power switch (max), µA	I_{DSS}			20	0				
Junction temperature (max), °C	T_{j}	150							
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	0.3	0.23	0.18	0.16	0.15	0.12		
Insulation strength, (DC), V	V _{ISOL}			100	00				

Table 3.9 - Basic and maximum permissible parameters of modules of 2 class - up to 80 A

Parameter name, unit	Cymbol	Current, A							
	Symbol	5	10	20	40	60	80		
Drain-source voltage (max), V	$ m V_{DSS}$	200							
Direct voltage of power circuit (max), V	$V_{ m DC}$			13	0				
DC of power circuit (max), A	I_{DC}	5	10	20	40	60	80		
Pulse current of power circuit (max), A	I_P	15	30	60	120	180	240		
Drain-source resistance in open state (max), m Ω	R _{DS(on)}	300	180	85	30	25	15		
Direct voltage fall on reverse diode (max), V	V_{F}			1.	3				
Leakage current of power switch (max), µA	I_{DSS}			50)				
Junction temperature (max), °C	T_j	150							
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	2.0	1.2	0.9	0.6	0.45	0.31		
Insulation strength, (DC), V	$V_{\rm ISOL}$			100	00				

Table 3.10 - Basic and maximum permissible parameters of modules of 2 class - up to 400 A

Parameter name, unit	Symbol	Current, A							
	Symbol	120	160	200	240	300	400		
Drain-source voltage (max), V	$V_{ m DSS}$	200							
Direct voltage of power circuit (max), V	$V_{ m DC}$			13	0				
DC of power circuit (max), A	I_{DC}	120	160	200	240	300	400		
Pulse current of power circuit (max), A	I_P	360	480	600	720	900	1200		
Drain-source resistance in open state (max), $m\Omega$	R _{DS(on)}	9	7	5.5	4.5	3.5	2.8		
Direct voltage fall on reverse diode (max), V	V_{F}			1	3				
Leakage current of power switch (max), µA	I_{DSS}			20	0				
Junction temperature (max), °C	T_{j}	150							
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	0.25	0.18	0.14	0.12	0.09	0.07		
Insulation strength, (DC), V	V_{ISOL}			100	00	•	•		

Table 3.11 - Basic and maximum permissible parameters of modules 2,5 class - up to 80 A

Parameter name, unit	Symbol			Curre	nt, A		
	Symbol	5	10	20	40	60	80
Drain-source voltage (max), V	$V_{ m DSS}$	250					
Direct voltage of power circuit (max), V	V_{DC}	170					
DC of power circuit (max), A	I_{DC}	5	10	20	40	60	80
Pulse current of power circuit (max), A	I_P	15	30	60	120	180	240
Drain-source resistance in open state (max), $m\Omega$	R _{DS(on)}	280	140	75	30	25	15
Direct voltage fall on reverse diode (max), V	V_{F}	1.3					
Leakage current of power switch (max), µA	I_{DSS}	50					
Junction temperature (max), °C	T_{j}	150					
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	1.0	0.8	0.6	0.5	0.26	0.2
Insulation strength, (DC), V	V _{ISOL}	1000					

Table 3.12 - Basic and maximum permissible parameters of modules of 2,5 class - up to 240 A

Parameter name, unit	Cymbol		Curre	ent, A			
	Symbol	120	160	200	240		
Drain-source voltage (max), V	$V_{ m DSS}$	250					
Direct voltage of power circuit (max), V	$V_{ m DC}$		17	70			
DC of power circuit (max), A	I_{DC}	120	160	200	240		
Pulse current of power circuit (max), A	I_{P}	360	480	600	720		
Drain-source resistance in open state (max), m Ω	R _{DS(on)}	10	7.5	6	5		
Direct voltage fall on reverse diode (max), V	V_{F}	1.3					
Leakage current of power switch (max), µA	I_{DSS}	200					
Junction temperature (max), °C	Tj	150					
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	0.17	0.13	0.1	0.09		
Insulation strength, (DC), V	$V_{\rm ISOL}$	1000					

Table 3.13 – Basic and maximum permissible parameters of modules of 6 class – up to 60 A

Parameter name, unit	Symbol			Curre	ent, A		
	Symbol	5	10	20	30	40	60
Drain-source voltage (max), V	V_{CES}	600					
Direct voltage of power circuit (max), V	V_{DC}	350					
DC of power circuit (max), A	I_{DC}	5 10 20 30 40				60	
Pulse current of power circuit (max), A	I_P	15	30	60	90	120	180
Drain-source resistance in open state (max), m Ω	V _{CE(on)}	3.0					
Direct voltage fall on reverse diode (max), V	V_{F}	2.5					
Leakage current of power switch (max), µA	I_{CES}	500					
Junction temperature (max), °C	T_j	150					
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	1.6	1.5	1.4	0.75	0.7	0.5
Insulation strength, (DC), V	V _{ISOL}	4000					

Table 3.14 – Basic and maximum permissible parameters of modules of 6 class – up to 300 A

Parameter name, unit	Symbol			Curre	nt, A		
	Symbol	80	120	160	200	240	300
Drain-source voltage (max), V	V _{CES}	600					
Direct voltage of power circuit (max), V	V_{DC}	350					
DC of power circuit (max), A	I_{DC}	80 120 160 200 240				300	
Pulse current of power circuit (max), A	I_P	240	360	480	600	720	900
Drain-source resistance in open state (max), $m\Omega$	V _{CE(on)}	3.0					
Direct voltage fall on reverse diode (max), V	V_{F}	2.5					
Leakage current of power switch (max), µA	I_{CES}	3000					
Junction temperature (max), °C	T_{j}	150					
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	0.25	0.18	0.13	0.11	0.09	0.07
Insulation strength, (DC), V	V _{ISOL}	4000					

Table 3.15 – Basic and maximum permissible parameters of modules of 12 class – up to 60 A

Parameter name, unit	Symbol			Curre	nt, A		
	Symbol	5	10	20	30	40	60
Drain-source voltage (max), V	V_{CES}	1200					
Direct voltage of power circuit (max), V	V_{DC}	650					
DC of power circuit (max), A	I_{DC}	5	10	20	30	40	60
Pulse current of power circuit (max), A	I_P	15	30	60	90	120	180
Drain-source resistance in open state (max), m Ω	V _{CE(on)}	3.0					
Direct voltage fall on reverse diode (max), V	V_{F}	2.5					
Leakage current of power switch (max), µA	I_{CES}	500					
Junction temperature (max), °C	Tj	150					
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	2.3	1.4	0.8	0.6	0.5	0.4
Insulation strength, (DC), V	V _{ISOL}	4000					

Table 3.16 – Basic and maximum permissible parameters of modules of 12 class – up to 300 A

Parameter name, unit	Symbol			Curre	nt, A		
	Symbol	80	120	160	200	240	300
Drain-source voltage (max), V	V _{CES}	1200					
Direct voltage of power circuit (max), V	V_{DC}	650					
DC of power circuit (max), A	I_{DC}	80	120	160	200	240	300
Pulse current of power circuit (max), A	I_P	240	360	480	600	720	900
Drain-source resistance in open state (max), $m\Omega$	V _{CE(on)}	3.0					
Direct voltage fall on reverse diode (max), V	V_{F}	2.5					
Leakage current of power switch (max), µA	I_{CES}	3000					
Junction temperature (max), °C	T_{j}	150					
Junction-base thermal resistance (max), °C/W	R _{th(j-a)}	0.26	0.18	0.13	0.11	0.09	0.07
Insulation strength, (DC), V	V_{ISOL}	4000					

4. INSTRUCTIONS FOR USE

General requirements

It is recommended to operate the module at operating value of the average current not more than 80% from specified one in the name of the module and the junction temperature not more than (70÷80)% from the maximum one.

It is not allowed to operate the module in modes at simultaneous influence of two or more maximum permissible values.

In the electric circuit of equipment with using of the modules should be provided the fast-speed protection against prohibitive overloads, SCs and commutating overloads.

Module mounting

The module is mounted in the equipment to cooler (chassis, application housing, metal plates, etc.) in any orientation with screws M4 with torque (5 ± 0.5) N·m, with obligatory installation of flat and spring washers. The module should be located in such a way to protect it against additional heat from neighbor elements. The planes of cooler ribs should be oriented in the direction of air flow.

The contact area of the cooler should have roughness not more than $2.5~\mu m$ and flatness tolerance – not more than $30~\mu m$. Cooler surface should not have any rough edges, honeycombs. There should not be extraneous particles between the module and cooler. To improve the heat balance the module installation to mounting area or cooler should be carried out by instrumentality of heat conducting pastes or having similar heat conducting properties.

When mounting, you should provide uniform pressure of module housing to cooler. For this purpose you should tighten all screws uniform in 2-4 steps by turns: first, located on one diagonal, then on the other one. When dismounting the module the screw tightening should be done in the reverse order.

Not earlier than in 3 hours after mounting the screws should be rotated to the end, keeping the prescribed torque, because the part of heat conducting paste under pressure will outflow and the fastening can fail.

You can mount the several modules without additional insolating spacer to one cooler, on condition that voltage between outputs of different modules will not exceed the minimum value of isolation breakdown voltage of each of them or when cooler is grounded.

Connection to module

Electric wires and cables will be connected to power contacts of the module by means of screws M6 or M5 with torque (4 ± 0.5) N·m or by means of bolts M8 or M10 with torque (5 ± 0.5) N·m and the washers that are supplied in the package.

Power wires should be connected by means of connectors with corrosion-inhibiting cover, which are purified of foreign layers. When the screws (bolts) are tightened it is recommended to fasten the connection with paint. It is recommended to tighten screws (bolts) repeatedly in 8 days and in 6 weeks after the start of operating. Afterwards tightening should be controlled at least once a half year.

The controlling module outputs (gate and control source output) are intended for mounting by means of soldering or split connectors. Permissible number of module outputs' re-soldering during electronic (assembly) edit is three. Outputs soldering should be performed at temperature not higher than (235±5) °C. Soldering duration is not longer than 3 sec.

When mounting and operating it is necessary to make protection measures against static electricity impact and overvoltage in gate circuit; on mounting personnel should use a ground band and grounded low-voltage soldering irons with transformer supply.

Operation requirements

The module should be used under mechanical loads in accordance with Table 4.1.

Table 4.1 – Mechanical loads impact

External exposure factor	External exposure factor value
Sinusoidal vibration:	
- acceleration, m/s ² (g);	150 (15)
- frequency, Hz	0.5 - 100
Multiple-acting mechanic shock:	
- peak shock acceleration, m/s ² (g);	40 (4)
- shock acceleration duration, ms	50
Linear acceleration, m/s ² (g)	5000 (500)

The module should be used under climatic loads in accordance with Table 4.2.

Table 4.2 – Climatic loads impact

Climatic factor	Climatic factor value
Reduced ambient temperature:	
- operating, °C;	- 40
- maximum, °C	- 45
High ambient temperature:	
- operating, °C;	+ 85
- maximum, °C	+ 100
Relative humidity at temperature 35 °C without	
moisture condensation, %, max	98

Safety requirements

- 1. Working with the module should only be performed by qualified personnel.
- 2. Do not touch the power terminals of the module when applying a voltage.
- 3. Do not connect or disconnect wires and connectors while the power to the circuit module is applying a voltage.
 - 4. Do not touch the module radiator, if it is not grounded in and is applying a voltage on it.

- 5. Do not touch the cooler and the module housing during its operation, since their temperature can be very high.
- 6. Immediately turn off the power supply of the module if it discharges smoke, odor or abnormal noises, check if the module correctly connected.
 - 7. It is not allowed to penetrate water and other liquids to the module.

5. RELIABILITY REQUIREMENTS

The manufacturer guarantees the quality of the module all the requirements of the passport if the consumer observes terms and conditions of storage, installation and operation, as well as guidance on the application specified in the user's manual.

Operating warranty is two years from the acceptance date, in case of requalification – from the date of the requalification.

Reliability probability of the module for 25000 hours must be at least 0.95.

Gamma percentage life (T γ) of module at $\gamma = 90\%$ in typical operation conditions should not be less than 50 000 hours within lifetime.

Gamma-percent service life of the modules, subject to cumulative operating time is not more than gamma-percent life, not less than 10 years, at $\gamma = 90$ %.

Gamma-percent storageability time of the modules, at $\gamma = 90$ % and storing – 10 years.

6. OVERALL AND CONNECTING DIMENSIONS

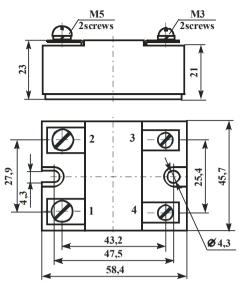


Figure 6.1 – Overall drawing of modules MT14, MT15D with maximum current up to 80 A

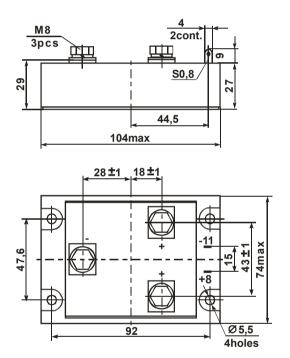


Figure 6.3 – Overall drawing of modules MT14, MT15D with maximum current 200, 240 A

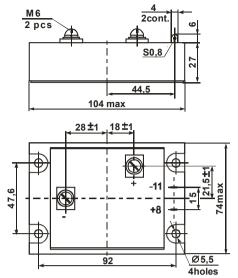


Figure 6.2 – Overall drawing of modules MT14, MT15D with maximum current 120, 160 A

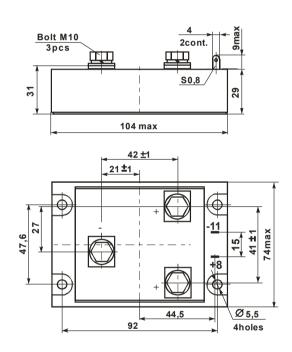


Figure 6.4 – Overall drawing of modules MT14, MT15D with maximum current 300, 400 A

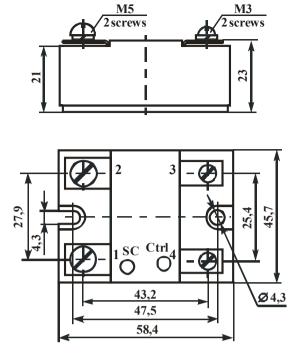


Figure 6.5 – Overall drawing of modules MT14PT, MT15PT with maximum current up to 80 A

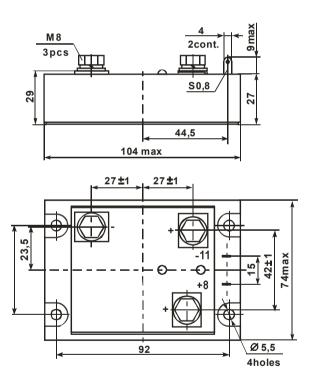


Figure 6.7 – Overall drawing of modules MT14PT, MT15PT with maximum current 180, 240 A

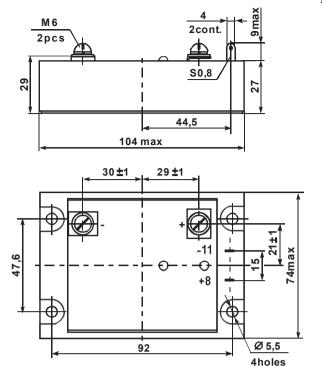


Figure 6.6 – Overall drawing of modules MT14PT, MT15PT with maximum current up to 160 A

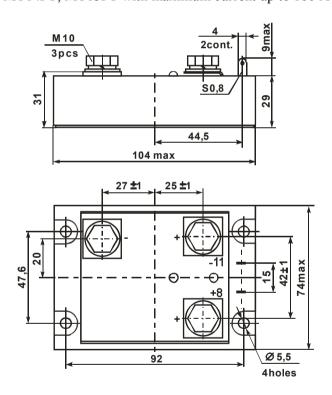


Figure 6.8 – Overall drawing of modules MT14PT, MT15PT with maximum current 320, 400 A

Precious metals are not contained.